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Deutschsprachige Übersicht über die
Dissertation

In der vorliegenden Dissertation werden Probleme studiert, die durch
die Anforderung der Materialwissenschaften, die Oberfläche von Halbleiter-
Chips genauer zu analysieren, motiviert sind. Eine neue, kürzlich von Phy-
sikern entwickelte Methode erlaubt es, aus elektronenmikroskopischen Auf-
nahmen von winzigen Kristallen die Anzahl der Atome auf den Atomsäulen
in der jeweils verwendeten Projektionsrichtung zu berechnen. Das wichti-
ge Problem, die genaue räumliche Position der Atome auf den Säulen zu
bestimmen, löst ihre Methode aber nicht. In dieser Dissertation werden
Algorithmen vorgestellt, die eine 3-dimensionale Konfiguration rekonstru-
ieren, die die gegebenen Meßdaten erfüllt. Dann wird von erfolgreichen
Computer-unterstützten Experimenten berichtet, Konfigurationen exakt
oder approximativ zu rekonstruieren. Diese Rekonstruktionsalgorithmen
könnten sich als sehr wichtig erweisen, um der Halbleiter-Industrie zu er-
lauben, die Produktionsbedingungen von Halbleiter-Chips genauer abzu-
stimmen. Schließlich werden Fragestellungen untersucht, die dem Rekon-
struktionsproblem ähnlich sind.
In dieser Zusammenfassung wird zunächst eine Überblick über das Ge-

biet der Diskreten Tomographie gegeben und die Diskrete Tomographie
in das weitere Feld der Tomographie eingeordnet. Nach der Beschreibung
mathematisch verwandter Probleme folgt ein ausführlicher Überblick über
die in dieser Dissertation erzielten Resultate.

(Diskrete) Tomographie

Das grundlegende Problem der Tomographie ist es, eine unbekannte
Funktion f, die eine Menge auf die nichtnegativen reellen Zahlen abbildet,
zu rekonstruieren. Über f ist lediglich
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1. die Projektion von f auf verschiedene Unterräume,
2. die Summe von f über verschiedene Unterräume oder
3. das Integral von f über verschiedene Unterräume

bekannt.
Ihre klassische Anwendung findet Tomographie in dem Problem, eine 3-

dimensionale Rekonstruktion der unbekannten Gewebedichte im menschli-
chen Körper aus den Röntgenaufnahmen aus einigen hundert Richtungen
(im Fall der Computer Tomographie (CT)) zu bestimmen. Mathematisch
bedeutet dies, bei planaren Problemen eine Radon-Transformation (sie-
he Radon [Rad17]) und bei höherdimensionalen Problemen eine X-ray-
Transformation zu invertieren. Daher werden für diese Probleme insbe-
sondere Methoden der Numerischen Analysis, der Funktionalanalysis so-
wie der Fourier-Analysis angewendet. Das Rekonstruktionsproblem wird
in dieser Anwendung beherrscht, wie jeder weiß, der sich schon einmal einer
Computer Tomographie unterzogen hat. Trotzdem ist es natürlich immer
wünschenswert, noch bessere Methoden zu finden, die mehr Details aus
weniger Daten in kürzerer Zeit bestimmen können. Dieses ist jedoch hier
nicht das Ziel.
Andere Klassen von Tomographie-Problemen ergeben sich, wenn die

Klasse der zu rekonstruierenden Funktionen, ihre Urbilder oder ihre Bild-
bereiche eingeschränkt werden. Im folgenden werden die zwei wichtigsten
Klassen vorgestellt.
Die erste Klasse ergibt sich, indem die Menge der zu rekonstruierenden

Funktionen eingeschränkt wird auf Funktionen, die zugleich charakteristi-
sche Funktionen eines geometrischen Objektes im �

2 oder �3 sind. Dieses
ist das Gebiet der Geometrischen Tomographie; als Quelle vieler inter-
essanter und aktueller Resultate hierzu eignet sich das Buch von Gard-
ner [Gar95]. Häufig wird die Menge der zulässigen Funktionen weiter ein-
geschränkt auf charakteristische Funktionen konvexer Mengen. Ein be-
merkenswertes Problem in diesem Zusammenhang ist die Frage nach der
Anzahl der nötigen Richtungen, die in der Ebene einen gegebenen konvexen
Körper eindeutig bestimmen. Dieses Problem wurde von Giering [Gie63]
gelöst, der zeigte, daß es für jeden solchen Körper drei Richtungen gibt, so
daß er durch X-rays in diese drei Richtungen eindeutig bestimmt ist.
Die zweite wichtige Klasse von Tomographie-Problemen sind solche der

Diskreten Tomographie, die sich ergeben, wenn der Definitionsbereich und
das Bild der unbekannten Funktion diskrete Mengen sind. Dabei geht
es darum, eine endliche Teilmenge eines Gitters zu rekonstruieren, wozu



(Diskrete) Tomographie xiii

lediglich die Anzahl ihrer Punkte auf Linien parallel zu wenigen Gitterge-
raden bekannt ist; jede dieser Zahlen entspricht natürlich der Summe der
charakteristischen Funktion der Menge entlang einer Geraden.
Der Begriff der “Discrete Tomography” wurde von Larry Shepp geprägt,

als er 1994 ein DIMACS Mini-Symposium mit diesem Titel organisierte.
Trotzdem ist die Diskrete Tomographie älter, als das Datum der Namens-
gebung vermuten läßt. Die ersten Ergebnisse wurden lediglich in ande-
rer Terminologie formuliert, zum Beispiel als Fragen über meßbare Men-
gen (siehe Lorentz [Lor49]), oder als Fragen über binäre Matrizen (siehe
Ryser [Rys57] und [Rys63, Kapitel 6]), oder als Fragen über die endliche
Radon-Transformation (siehe Bolker [Bol87]; dort wird die Invertierbarkeit
der affinen, der projektiven und der k-Mengen Transformation untersucht).
Später wurde die Frage der eindeutigen Bestimmbarkeit für konvexe

Mengen (das heißt hier genauer: konvexe Gittermengen) in der diskre-
ten Tomographie gestellt. Sie wurde von Gardner und Gritzmann [GG97]
dahingehend beantwortet, daß 4 geeignete Gitterrichtungen ausreichen, je-
de beliebige konvexe Gittermenge eindeutig festzulegen. Gleichermaßen
reichen auch 7 beliebige, paarweise nicht parallele Gitterrichtungen aus.
Nach vielen Jahren, in denen strukturelle Fragen untersucht wurden

und Algorithmen für zwei Richtungen (z.B. [Rys57, Lor49]) oder für sehr
viele Richtungen (siehe [Bol87]) betrachtet wurden, erhielt das Gebiet
einen zusätzlichen Impuls durch eine neue und wichtige Anwendung in
den Materialwissenschaften.
Diese neue Hauptanwendung ergibt sich aus einer neuen Analysemethode

namens QUANTITEM (von Schwander, Kisielowski, Baumann, Kim und
Ourmazd [SKB+93] und von Kisielowski, Schwander, Baumann, Seibt, Kim
und Ourmazd [KSB+95]) für Bilder der hochauflösenden Transmissions-
elektronenmikroskopie. QUANTITEM erlaubt, unter geeigneten Bedin-
gungen, die Anzahl der Atome in den Atomsäulen eines winzigen Kristalls
zu zählen. Diese Methode eignet sich besonders dazu, durch die amorphe
Silizium-Oxid-Schicht hindurch direkt Eigenschaften einer Silizium-Scheibe
zu bestimmen. Die Fähigkeit, die verborgene Oberfläche der Silizium-
Scheibe zu studieren, ist besonders wichtig für die Halbleiter-Industrie,
um die Produktionsbedingungen noch feiner abstimmen zu können. Aber
durch die zugrunde liegende Meßtechnik werden neue Anforderungen an
die Rekonstruktionsmethoden gestellt:
1. es können nur Messungen in bis zu 5 verschiedene Richtungen gemacht
werden, denn der Schaden an der Probe durch den hochenergetischen
Elektronenstrahl kann nur bis zu 5 Messungen vernachlässigt werden;
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2. das Mikroskop erlaubt nur einen beschränkten Schwenk-Winkel;
3. die Analyse durch QUANTITEM und die Auflösung des Kamera-De-
tektors (CCD) erlaubt nur Messungen entlang sogenannter Zonen-
Axen mit niedrigem Index;

4. die Probe ist möglicherweise nicht konvex.
Infolge dieser neuen Entwicklung werden mittlerweile in der Forschungs-
literatur der Diskreten Tomographie algorithmische Methoden verstärkt
untersucht. Einerseits gibt es Studien, die sich mit der ��-Schwere ver-
schiedener Rekonstruktionsprobleme befassen (siehe Gardner, Gritzmann
und Prangenberg [GGP99], Woeginger [Woe96], Gritzmann, Prangenberg,
de Vries und Wiegelmann [GPVW98], Barcucci, Del Lungo, Nivat und Pin-
zani [BLNP96]). Dann gibt es Aufsätze, in denen polynomial lösbare Auf-
gaben, wie das Rekonstruktionsproblem für zwei Richtungen, untersucht
werden, siehe Anstee [Ans83]. Schließlich sind die experimentellen Arbei-
ten wie beispielsweise von Salzberg, Rivera-Vega und Rodŕıguez [SRVR98],
und Matej, Herman und Vardi [MHV98] zu erwähnen.
Viele Ergebnisse dieser Dissertation liegen in diesem algorithmisch mo-

tivierten Bereich der diskreten Tomographie.

Packungen, Überdeckungen und Stabile Mengen

Eine sehr natürliche Formulierung des Rekonstruktionsproblems der Dis-
kreten Tomographie ergibt sich durch die Interpretation als Fragemengen.
Die Punkte auf jeder Geraden einer gegebenen Instanz ergeben eine Frage-
menge, und die Messung entlang dieser Geraden assoziiert eine natürliche
Zahl mit ihr. Das Problem ist nun, eine Teilmenge der Grundmenge zu
finden, die jede der Fragemengen in der entsprechenden Anzahl von Ele-
menten schneidet. Dieses Frageproblem hat die Form eines verallgemeiner-
ten Mengen-Partitionierungsproblems. Da die Rekonstruktion von Konfi-
gurationen von mindestens 3 Messungen ��-schwer ist (siehe [GGP99]),
ist es plausibel, das Problem zu relaxieren und die mit den Fragemengen
assoziierten Zahlen nur als obere Schranken (oder untere Schranken) für
die Größe des Durchschnitts der Fragemenge und der zu bestimmenden
Menge zu interpretieren. Dann besteht die Aufgabe darin, eine bezüglich
der Bedingungen möglichst große (bzw. möglichst kleine) Menge zu fin-
den. Diese beiden Relaxationen haben die Form eines verallgemeinerten
Mengen-Packungs- bzw. Mengen-Überdeckungsproblems.
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Die Klasse der Mengen-Partitionierungsprobleme wird häufig zur Model-
lierung des Problems, Flugzeugbesatzungen in Arbeitsschichten einzutei-
len, verwendet (siehe Hoffman und Padberg [HP93]). Eine weitere Anwen-
dung finden diese Probleme in der Disposition verschiedener Verkehrsmittel
(siehe Tesch [Tes94] und Borndörfer [Bor97]).
Die Terminologie der Partitionierungsprobleme erlaubt es, diese Anwen-

dungen sehr einfach zu modellieren. Aber in den Lösungsalgorithmen wird
normalerweise ausgenutzt, daß eine Lösung des Partitionierungsproblems
auch als simultane Lösung eines Packungs- und eines Überdeckungspro-
blems aufgefaßt werden kann. Diese Vorgehensweise erklärt, warum es
wichtig ist, zusätzlich Packungs- und Überdeckungsprobleme zu untersu-
chen. Im Kapitel 4 werden neue Methoden, um effizient gute approximative
Lösungen für verallgemeinerte Mengen-Packungs- und Überdeckungspro-
bleme zu berechnen, vorgestellt.
Stabile-Mengen-Probleme sind ein (vermeintlicher) Spezialfall von Men-

gen-Packungsproblemen. Bei ihnen geht es darum, eine möglichst große
Teilmenge von nicht benachbarten Knoten eines Graphen zu finden.
Es mag überraschend erscheinen, daß jedes Mengen-Packungsproblem

sich in ein Stabile-Mengen-Problem überführen läßt. Die zugrundeliegen-
de Transformation basiert auf der Idee, die Fragemengen als Cliquen des
Graphen aufzufassen.

Überblick und Hauptergebnisse

In diesem Abschnitt wird ein Überblick über die verschiedenen Kapi-
tel gegeben. Der Hauptteil mit den wichtigsten Ergebnissen besteht aus
den Kapiteln 3–7. Die Kapitel sind im wesentlichen eigenständig; lediglich
die gemeinsamen Definitionen und Grundlagen sind in Kapitel 2 zusam-
menhängend dargestellt. Ein Gesamtüberblick über den Zusammenhang
der einzelnen Gebiete ist auf Seite xx in der Tabelle 0.1 dargestellt.

Kapitel 2: Zunächst wird eine gründliche Einführung in die Physik der
Meßmethode, die der Diskreten Tomographie zugrunde liegt, gegeben und
es wird erklärt, wie Bilder in hochauflösenden Transmissionselektronen-
mikroskopen entstehen. Dann wird erläutert, wie QUANTITEM Atome
zählen kann. Schließlich wird über neue Ergebnisse berichtet, die sich er-
geben, indem zunächst die mikroskopische Aufnahme der winzigen Probe
simuliert wurde, und das sich ergebende Bild dann mit einer Implemen-
tation von QUANTITEM ausgewertet wurde, um die Atomanzahlen auf
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den Säulen zurückzugewinnen. Hierbei zeigt sich, daß die Zahlen (bis auf
Rauschen) in gutem Einklang mit den Vorhersagen der Theorie stehen.
Damit wird ein weiterer Beleg angegeben, daß es tatsächlich möglich ist,
die Atomanzahlen aus solchen Bildern zu rekonstruieren.
Obgleich das Mikroskop in zwei Richtungen geschwenkt werden kann,

steht für die Aufnahmen nur eine Richtung zur Verfügung, denn mit der an-
deren muß auf das Objekt gezielt werden. Somit liegen alle Meßrichtungen
in einer einzigen Ebene, und das ursprünglich 3-dimensionale Rekonstrukti-
onsproblem zerfällt in eine Serie von unabhängig lösbaren, 2-dimensionalen
Rekonstruktionsproblemen. Schließlich wird das Rekonstruktionsproblem
formal beschrieben.

Kapitel 3: In diesem Abschnitt wird der polyedrische Ansatz benutzt,
um die algorithmischen Probleme der Diskreten Tomographie zu modellie-
ren. Diese Probleme sind: Rekonstruktion, Eindeutigkeit und Invarianz.
Das Tomographie-Polytop wird definiert, und einige seiner gültigen Unglei-
chungen und Facetten werden studiert.
Algorithmen werden untersucht, um das Rekonstruktionsproblem für 3

Richtungen mit Methoden der ganzzahligen Optimierung zu lösen, und
dann werden Ergebnisse einer konkreten Implementation vorgestellt. Pro-
bleme der Größe 70 × 70 lassen sich im Durchschnitt in 9 Minuten lösen;
selbst Probleme der Größe 100× 100 sind lösbar. In Anbetracht dieser er-
folgversprechenden Ergebnisse wird dann ein Algorithmus vorgeschlagen,
der in jedem Schritt entweder die Lösung oder eine gute untere Schranke
findet. Diese Schranke kann dann benutzt werden, um eine verletzte Un-
gleichung zu finden. Die Berechnung der verletzten Ungleichung erfordert
die Lösung eines sehr viel kleineren, allerdings ��-schweren, Unterpro-
blems.

Kapitel 4: Obwohl die Methoden des vorhergehenden Kapitels geeig-
net sind, Probleme der Größe 100 × 100 zu lösen, ist absehbar, daß für
die Praxis auch deutlich größere Probleme gelöst werden müssen. Da es
aber zur Zeit unmöglich ist, Probleme der Größenordnung 500 × 500 ex-
akt zu lösen, werden in diesem Kapitel approximative Lösungsverfahren
von Relaxationen studiert. Es zeigt sich, daß diese Relaxationen die Form
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von verallgemeinerten Mengen-Packungs- und Überdeckungsproblemen ha-
ben. Für die beiden verallgemeinerten Problemklassen werden sowohl ein-
fache Greedy-Algorithmen als auch kompliziertere iterative Verbesserungs-
Algorithmen angegeben. Für ihre Güte ergeben sich Schranken, die im Fall
der Packungsprobleme scharf sind.
In der physikalischen Anwendung sind die Tomographie-Probleme nor-

malerweise dicht, d.h., circa die Hälfte der Kandidatenpositionen ist in
einer Lösung besetzt. Daher werden das Packungs- und das Überdeckungs-
problem für dichte Instanzen studiert. Für diese Probleme wird ein poly-
nomiales Approximationsschema konstruiert. Dieses Resultat ist eher von
theoretischem Interesse, da die involvierten Konstanten nicht klein sind.
Schließlich werden die Approximations-Algorithmen für Diskrete Tomo-

graphie spezialisiert. Die sich ergebenden Approximationsgüten sind für
Tomographie-Probleme neu. Es werden Beispiele dafür angegeben, daß die
Schranken scharf sind. Eine Implementation der auf der Packungsrelaxati-
on basierenden Algorithmen ist sehr erfolgreich. Sie ist nochmals deutlich
besser als ihre bereits guten theoretischen Schranken. In der Anwendung
zeigt sich, daß beispielsweise der beste Algorithmus mindestens 99% der
Atome in die Konfiguration packt.

Kapitel 5: Nachdem im vorhergehenden Kapitel Verallgemeinerungen der
Diskreten Tomographie studiert wurden, wird in diesem Kapitel, als eine
weitere Anwendung der Packungsprobleme, das Stabile-Mengen-Problem
untersucht. Früher wurde es als eigenständiges Objekt studiert, aber
heute ist es vor allem wichtig, weil es eine der beiden Relaxationen von
Mengen-Partitionierungsproblemen ist. Das Stabile-Mengen-Problem und
das Mengen-Packungsproblem sind, wie wir wissen, gleichwertig.
Der polyedrische Ansatz für Mengen-Partitionierungsprobleme wird

häufig bevorzugt, da dadurch die gleichzeitige Ausnutzung des Wissens
über beide Relaxationen möglich wird. Die polyedrische Beschreibung
des Stabile-Mengen-Problems wird studiert. Klassen von Facetten oder
gültigen Ungleichungen erhalten erst dann praktischen Wert, wenn das zu-
gehörige Separationsproblem gelöst werden kann. Hierbei stellt das Sepa-
rationsproblem die Aufgabe dar, zu einer gegebenen fraktionellen Lösung
eine verletzte Ungleichung zu finden. Daher wird im folgenden dem Se-
parationsproblem besondere Aufmerksamkeit geschenkt. Für die Klasse
der Anti-Netz-Ungleichungen, die von L. E. Trotter Jr. [Tro75] eingeführt
wurden, werden die folgenden Fragen beantwortet:
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1. Was läßt sich über das Separationsproblem der Anti-Netz-Ungleich-
ungen beweisen?

2. Wie stark sind die Anti-Netz-Ungleichungen?
3. Welche gemeinsame Verallgemeinerung erlauben die Anti-Netz- und
die verallgemeinerten Rad-Ungleichungen?

Es ist sehr überraschend, daß über das für die Anwendungen wichtige Se-
parationsproblem der Anti-Netz-Ungleichungen seit ihrer Entdeckung 1975
nichts herausgefunden wurde (nach meinem Kenntnisstand). Dieses ist um
so bemerkenswerter, als daß sie sowohl die ungeraden Kreis-Ungleichungen
als auch die Cliquen-Ungleichungen als verschiedene Extremfälle enthal-
ten. Für die ungeraden Kreis-Ungleichungen ist eine Separations-Methode
von Grötschel, Lovász und Schrijver [GLS93] bekannt; andererseits ist das
Separationsproblem für die Cliquen-Ungleichungen ��-schwer, obgleich die
Cliquen-Ungleichungen in der polynomial separierbaren Klasse der ortho-
normalen Repräsentations-Ungleichungen [GLS93, 9.3.2] enthalten sind.
Mir ist kein Fall bekannt, in dem die Anti-Netz-Ungleichungen in einem
Lösungsprogramm für ganzzahlige Programme benutzt wurden. Ein wich-
tiger Vorteil der Anti-Netz-Ungleichungen ist, daß sie für jedes k ≥ 2 Un-
gleichungen enthalten, deren Support-Graph k-zusammenhängend ist. Da-
durch sind sie hilfreich in Graphen, die stärker zusammenhängend sind. Die
in Anwendungen häufig genutzten ungeraden Kreis-Ungleichungen hinge-
gen sind nur 2-zusammenhängend, und Zweizusammenhang des Support-
Graphen ist bereits eine notwendige Bedingung für jede Facette; hier haben
Anti-Netz-Ungleichungen ihre besondere Stärke. Es wird eine Hierarchie
von Ungleichungsklassen angegeben, die alle Anti-Netz-Ungleichungen um-
faßt. Eine Separations-Methode wird präsentiert, die für die Ungleichungen
jeder Hierarchie-Ebene in polynomialer Zeit arbeitet. Dieses Ergebnis ist
bestmöglich, da andererseits bewiesen wird, daß das Separationsproblem
der Anti-Netz-Ungleichungen im allgemeinen ��-schwer ist.
Es werden weiterhin untere Schranken für die Lovász-Theta-Funktion

[Lov79] für Anti-Netze angegeben, und damit wird bewiesen, daß die Anti-
Netz-Ungleichungen nicht von der Klasse der orthonormalen Repräsenta-
tions-Ungleichungen impliziert werden.
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Eine neue Klasse von gültigen Ungleichungen wird konstruiert, die
die Klassen der Anti-Netz-Ungleichungen und der verallgemeinerten Rad-
Ungleichungen (siehe Cheng und Cunningham [CC97]) gemeinsam ver-
allgemeinert. Für ihr Separationsproblem wird ein Algorithmus vorge-
stellt. Schließlich werden die Facetten unter den echten Anti-Netz-Rad-
Ungleichungen vollständig charakterisiert, indem Graphen-Kompositionen
verwendet werden, die Facetten-erhaltend sind.

Kapitel 6: In diesem Kapitel wird ein anderer Aspekt des Polytops der
stabilen Mengen studiert. Es ist mitunter sehr mühsam, für eine neue Klas-
se gültiger Ungleichungen zu beweisen, daß sie Facetten induziert. Dieser
Mühsal wird in der Literatur häufig begegnet, indem Operationen benutzt
werden, die den Facetten-Beweis für eine komplizierte Konfiguration auf
denjenigen für eine einfachere Konfiguration reduzieren. Beispiele hierfür
sind:
1. Chvátals [Chv75] Substitution eines Graphen in einen Knoten eines
anderen Graphen und

2. Cunninghams [Cun82] Kompositions-Methode.
Einige neue Resultate von Borndörfer und Weismantel [BW97] (siehe auch
[Bor97, Chap. 2]) haben mich motiviert, die neue Graphen-Operation der
Partiellen Substitution zu definieren, die Chvátals und Cunninghams Ope-
rationen verallgemeinert. Bedingungen werden angegeben, die garantieren,
daß nach der partiellen Substitution von zwei Facetten sich wieder eine Fa-
cette ergibt. In Verallgemeinerung einer Idee aus [BW97] wird für eine
Klasse von Ungleichungen, die leicht mit der neuen Methode konstruierbar
sind, ein polynomialer Separations-Algorithmus konstruiert.

Kapitel 7: Abschließend werden zwei verschiedene Modelle verglichen,
die zur Lösung des Rekonstruktionsproblems der Diskreten Tomographie
in der Literatur vorgeschlagen wurden. Im ersten Modell ist die einzige
Anforderung, daß die Meßdaten erfüllt werden. Im zweiten Modell wird
darüberhinaus verlangt, daß alle Linien einer Richtung das Objekt in einem
Intervall schneiden. Für beide Modelle werden Algorithmen verwendet, die
eine exakte Lösung liefern, welche sich möglichst stark von der Ausgangs-
konfiguration unterscheidet. Mit diesen Algorithmen läßt sich vergleichen,
wieviel Information die verschiedenen Modelle enthalten und zur Verfügung
stellen. Beide Algorithmen wurden dann benutzt, um zufällig generierte
Instanzen zu lösen. Obwohl klar ist, daß das zweite Modell—zeilenkonvex
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genannt—weniger Mehrdeutigkeit erlaubt als das weniger restriktive er-
ste Modell, so ist doch überraschend, wie stark die Mehrdeutigkeit im er-
sten Modell ist. Gleichermaßen bemerkenswert ist, daß im zeilenkonvexen
Modell, insbesondere im Fall der für die Anwendung besonders wichtigen
hohen Dichte, nahezu keine Mehrdeutigkeiten auftreten. Es ist allerdings
nicht völlig klar, ob in der Praxis wirklich Zeilenkonvexität der Probe an-
genommen werden darf.

Zur besseren Übersicht für den Leser gebe ich schließlich eine tabellari-
sche Übersicht über den Zusammenhang der einzelnen Problemfelder (in
den Zeilen) und des Lösungsansatzes (in den Spalten) zusammen mit der
Angabe des relevanten Abschnittes. Siehe hierzu Tabelle 0.1.

Polytope Algorithmen

Diskrete Tomographie 3 2.5, 3.6, 4.6, 7
Packen und Überdecken 3.2 4
Stabile-Mengen-Probleme 5, 6 4.5, 5.3–5.7, 6.3

Tabelle 0.1. Beziehung der verschiedenen Abschnitte
dieser Dissertation und der zugehörigen Gebiete.
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CHAPTER 1

Introduction

The present thesis studies various problems that are motivated by the
demand in material sciences to study the surface of semiconductor chips.
A recent, promising technique developed by physicists is able to compute
from few electron microscopic images the number of atoms in columns of
the crystal in few directions. But that tool cannot reconstruct the spatial
location of the atoms in the studied sample. We will present in this thesis
methods to reconstruct 3-dimensional configurations that fulfill the given
measurements. We will report on computational experiments conducted
with these algorithms. These reconstruction algorithms might permit the
semiconductor industry to fine-tune the production conditions for chips.
Furthermore, problems related to the reconstruction problem of discrete
tomography are studied.
In this chapter we give an overview over the area of discrete tomogra-

phy and put discrete tomography into the broader context of tomography
(Section 1.1). Then we explain related problems (Section 1.2). Finally we
give a thorough overview of our results (Section 1.3). The relation among
all areas is summarized on page xx, Table 0.1.

1.1. (Discrete) Tomography

The basic problem of tomography is to reconstruct an unknown function
f that maps some known domain into the set of nonnegative real numbers.
About f one of the following is known:

1. the projections of f onto different subspaces,
2. the sums of f over different subspace, or
3. the integrals of f over different subspace.

The classical application of tomography is to obtain a 3-dimensional
reconstruction of the unknown density of tissue in a human body from X-
rays along several hundred directions. The images of the X-rays correspond
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to integrals of the unknown density function along lines. Mathematically
speaking, the basic problem of this application is to invert a Radon trans-
form (see Radon [Rad17]) if the domain is 2-dimensional or to invert an
X-ray transform if the domain’s dimension is at least 3; so the methods
used for it come mainly from numerical analysis, functional analysis, and
in particular Fourier analysis. This method is nowadays a well established
technique as anybody can witness who underwent computerized tomogra-
phy. (Of course, it is nevertheless desirable to obtain better reconstructions
that reveal more details in shorter time from less data, but this is not our
metier.)
Various other classes of tomographic problems result, if the class, the

domain, or the range of the functions is restricted. Next we want to
introduce two important subclasses.
The first class is obtained by restricting the functions to those that can

be described as characteristic functions of geometric subsets of �2 or �3 .
This is the area of geometric tomography; for an excellent state-of-the-art
survey of geometric tomography we recommend Gardner’s book [Gar95].
Usually the class of functions is further restricted to characteristic func-
tions of convex bodies. One problem to be mentioned is the question about
conditions that guarantee unique reconstruction for a planar convex body.
This problem was solved by Giering [Gie63] who showed that for every pla-
nar convex body there exist three directions, so that the body is uniquely
determined by projections along these three directions.
The second class, called discrete tomography, results if the domain and

image of the unknown function is restricted to be discrete. Usually, one
wants to reconstruct a finite subset of a lattice from the knowledge of
the size of intersections of the unknown set with lines of various lattice
directions; the size of this intersection is of course just the sum of the
characteristic function along the candidate points on this line.
Apparently the term ‘discrete tomography’ was coined by Larry Shepp

who organized, in 1994, a DIMACS Mini-Symposium with this title. Nev-
ertheless, the area of discrete tomography is older than its only recent
baptism might suggest. In fact, the early results in discrete tomography
were either worded as questions about measurable sets (see, for example
Lorentz [Lor49]) or as questions about binary matrices (see, for example
Ryser [Rys57] and [Rys63, Chapter 6]) or as questions about finite Radon-
transforms (see, for example Bolker [Bol87] who studies invertability for
the affine, projective, and k-set transforms).



1.1. (Discrete) Tomography 3

Later, the uniqueness question for convex sets (that is: convex lattice
sets) was raised in discrete tomography. It was answered by Gardner
and Gritzmann [GG97] who showed that every planar convex lattice set is
uniquely determined (among the class of planar convex lattice sets) by X-
rays along 4 suitable lattice directions or along any 7 mutually nonparallel
lattice directions.
After many years during which questions about structural properties and

about algorithms either for two directions (for example, [Rys57, Lor49]) or
very many directions (see [Bol87]) were studied, the field gained additional
momentum by a new, important application in material sciences.
This primary new application stems from a novel method called QUAN-

TITEM (by Schwander, Kisielowski, Baumann, Kim, and Ourmazd
[SKB+93]; and Kisielowski, Schwander, Baumann, Seibt, Kim, and Our-
mazd [KSB+95]) for analyzing images obtained by high resolution trans-
mission electron microscopy. QUANTITEM permits (under certain cir-
cumstances) to count atoms in each atomic column of a crystal. This
method is particularly well suited to look through the amorphous layer on
top of silicon wafers. The ability to analyze the hidden surface of the wafer
would be very helpful for the semiconductor industry to further fine-tune
the production parameters. But the underlying type of microscope and
sample presents new challenges:
1. measurements can be performed only along up to 5 directions, because
the damage to the specimen caused by the high energy electron beam
in the microscope is negligible only for up to 5 directions; for more
directions the damage becomes more serious;

2. the microscope permits only a restricted tilt-angle;
3. the analysis by QUANTITEM and the resolution of the used detector
(CCD) permit only measurements along zone-axes of low index;

4. the specimen may not be convex.
Recently the emphasis of research has shifted more towards algorith-

mic questions related to discrete tomography. There are some articles
that prove that certain tasks are computational intractable (see Gardner,
Gritzmann, and Prangenberg [GGP99]; Woeginger [Woe96]; Gritzmann,
Prangenberg, de Vries, and Wiegelmann [GPVW98]; and Barcucci, Del
Lungo, Nivat, and Pinzani [BLNP96]). Then, there are reports on com-
putationally tractable tasks like the reconstruction for two directions, see
Anstee [Ans83]. Also, one should mention several experimental studies like
Salzberg, Rivera-Vega, and Rodŕıguez [SRVR98]; and Matej, Herman, and
Vardi [MHV98].
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Many results of this dissertation lie in this more algorithmically flavored
area of discrete tomography.

1.2. Packing, Covering, and Stable Sets

A natural way to look at problems of discrete tomography is in terms of
an interpretation with query sets. Each line in a given instance is a query
set and the measurement along this line describes how many elements
of this set should be chosen. This problem constitutes a generalized set
partitioning problem. As the reconstruction problem in the important
case of at least 3 directions is ��-complete (see [GGP99]) it is natural to
consider relaxations, where the numbers associated with the query sets
describe only upper bounds (or lower bounds) on the number of elements
and one seeks a solution with as many (as few) elements as possible. These
two relaxations have the form of a generalized set packing problem and of
a generalized set covering problem, respectively.
The class of set partitioning problems is used most frequently in liter-

ature to solve airline crew scheduling problems (see for a recent article,
Hoffman and Padberg [HP93]), and Dial-a-Ride problems of different types
(see Tesch [Tes94] and Borndörfer [Bor97]).
Partitioning problems provide a powerful language to model these ap-

plications easily. But the algorithms to solve concrete instances usually
exploit the fact that a solution of a partitioning problem can equivalently
well be described as a simultaneous solution of a packing and a covering
problem. This is the reason why for all applications it is very important to
study packing and covering problems on their own. In Chapter 4 we present
new results for obtaining approximate solutions of generalized cardinality
set packing and covering problems.
A special (though not that special) case of set packing problems is consti-

tuted by stable set problems on graphs. Here the task is to find the largest
subset of vertices of a graph, so that all vertices of this subset are nonad-
jacent. This constitutes a packing problem when the edges are considered
as query sets of capacity 1.
It might appear to be more surprising, that every set packing problem

can be transformed into a stable set problem. This transformation is done
by interpreting all the query sets (that have in this case capacity 1) of the
set packing problem as cliques of the stable set problem.



1.3. Overview and Main Results 5

1.3. Overview and Main Results

The main part and contribution of this dissertation are Chapters 3–7.
In the present section we give an overview of the results obtained in the
different chapters. The chapters are mainly self-contained except for the
major part of the common, preliminary material, which is presented in
Chapter 2.

Chapter 2: We provide a thorough introduction into the physics under-
lying discrete tomography and explain how images are formed in a high
resolution transmission electron microscope. Then, we sketch how it is
possible to recover the number of atoms on lines by QUANTITEM. Fi-
nally we report on new results we obtained by first simulating the electron
microscope on a tiny sample and then analyzing the results with an im-
plementation of QUANTITEM to recover the number of atoms on the
atom columns. It turns out that our results (up to noise) nicely match the
theoretical predictions. Thereby we provide additional evidence that it is
indeed possible to recover the atom-counts from an image obtained by high
resolution transmission electron microscopy. Even though the microscope
has two axes of freedom, one of them is used entirely to maintain the field
of vision; so only one degree of freedom can be used for different images.
Hence all measurement directions lie in a single plane and the (originally
3-dimensional) reconstruction problem decomposes quite naturally into a
set of independent, 2-dimensional problems. Finally, we state the most im-
portant mathematical problems related to the reconstruction of the spatial
data from few microscopic images.

Chapter 3: The machinery of polyhedral combinatorics is used as a
mighty tool to formulate algorithmic problems of discrete tomography
like reconstruction, uniqueness, and invariance in a unifying framework.
First the tomography polytope is defined and then two new classes of
valid inequalities are introduced and conditions are studied that guarantee
facetness for the induced faces.
We investigate algorithms to solve the reconstruction problem for 3 di-

rections by integer programming and report then about computational
results of an implementation. Problems of size 70 × 70 were on average
solved within 9 minutes; even problems of size 100×100 that involve 10000
variables can be solved. Given these encouraging results we propose an al-
gorithm which provides in any given step either a solution, or a good lower
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bound. With the help of this lower bound we can then compute a valid
cut that is violated by the current fractional solution. The computation of
the cut involves solving a tiny instance of an ��-hard problem.

Chapter 4: Even though the methods introduced in Chapter 3 suffice
to solve problems of size up to 100 × 100 there is demand to solve even
larger problems. But for the time being it appears infeasible to solve
problems of sizes up to 500×500 exactly. Hence we investigate relaxations
of the reconstruction problem. It turns out, that these relaxations have the
form of generalized cardinality packing and covering problems. For both
problems we propose simple greedy-type and more elaborate improvement-
type approximation algorithms. We obtain bounds for their performance,
which are in the case of the packing problems sharp.
In practice, all tomographic problems are dense. Hence we look into the

generalized packing and covering problems for dense instances. For them
we obtain a polynomial time approximation scheme. This result should be
regarded as a primarily theoretical result, as the involved ‘constants’ are
intractably large.
Finally we specialize the approximation algorithms to discrete tomogra-

phy. The resulting theoretical bounds are new, as are the algorithms. We
provide some examples indicating that the theoretical bounds are sharp.
Then we report about our quite successful implementation of the pack-
ing algorithms for discrete tomography. In practice, they outperform the
theoretical bounds by a large factor. The best of our algorithms usually
manages to fill in more than 99% of the required atoms.

Chapter 5: After we considered in the previous chapter a generaliza-
tion of discrete tomography in this chapter we investigate as a particular
application of set packing problems the stable set problems. They have
been thoroughly studied in their own right. But today they are studied
more for their property that they constitute one of two relaxations of the
set partitioning problems, as stable set problems and standard set pack-
ing problems are equivalent. (Of course, many problems are equivalent in
being ��-complete but stable set problem and set packing are just two
different sides of a single coin.)
The polyhedral approach is frequently preferred for set partitioning prob-

lems because it permits easily to incorporate and exploit knowledge about
both relaxations simultaneously. Here, we study the polyhedral descrip-
tion of the stable set problem. Classes of facet defining or valid inequalities
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are most helpful if their separation problem can be solved. The separation
problem is to find a violated inequality in this class for a given fractional
solution. Therefore, we place special emphasis on the separation problem.
For the class of antiweb inequalities defined by L. E. Trotter Jr. [Tro75]
we answer in particular the following three questions:
1. What can be said about the separation problem for antiweb inequal-
ities?

2. How strong are antiweb inequalities?
3. What common generalization do the classes of antiweb inequalities
and of generalized wheel inequalities permit?

It is very surprising that for the separation problem of antiweb inequali-
ties, which solution is very important to use them in practice, nothing new
was discovered since their introduction in 1975. This is even more aston-
ishing, as they encompass the odd cycle and clique inequalities as different
extreme cases. For odd cycle inequalities a separation method is due to
Grötschel, Lovász, and Schrijver [GLS93]; for the clique inequalities the
separation problem is ��-complete, though they are contained in the poly-
nomially separable class of orthonormal representation cuts [GLS93, 9.3.2].
To our knowledge, antiweb inequalities have never been incorporated as
valid cuts into any integer programming solver. An important feature of
antiweb inequalities is, however, that for any k ≥ 2 they encompass in-
equalities whose support graph is k-connected; thereby they can utilize
higher connectivity of problem instances. On the other hand, the support
graphs of the frequently used odd cycle inequalities are just 2-connected;
this is at the same time just the minimum requirement for support graphs
of any facet; here antiweb inequalities have their special strength. We prove
that—though their separation problem is ��-complete in general—there is
a natural sequence of inequality-classes that are separable in polynomial
time; at the same time they are of higher connectivity than just 2-connected
and their (infinite) union contains all antiweb inequalities.
Further, we prove lower bounds for the Lovász-Theta function [Lov79]

of antiwebs hence showing that the antiweb inequalities are not implied by
the class of orthonormal representation cuts, which are not combinatorially
defined.
In addition we provide a unifying framework for the concepts of gener-

alized wheel inequalities (see Cheng and Cunningham [CC97]) and anti-
web inequalities. We provide a common generalization—the new class of
antiweb-wheel inequalities. Algorithms are provided to separate the mem-
bers of a corresponding hierarchy in polynomial time. Finally all facet
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inducing inequalities among the proper antiweb wheel inequalities are char-
acterized by utilizing graph compositions that maintain facetness.

Chapter 6: After studying different issues related to antiwebs in the
previous chapter we continue now with a look at the stable set polytope
from a different angle. We observed that at times it is quite tedious to
prove for new classes of inequalities that they are facet inducing. To al-
leviate this burden different operations are defined in the literature that
permit to reduce the proof of facetness of complicated configurations to a
proof for simpler configurations. Examples to mention in this direction are
Chvátal’s [Chv75] substitution of a graph into a vertex of another graph
and Cunningham’s [Cun82] composition. Stimulated by some new tech-
niques by Borndörfer and Weismantel [BW97] (see also [Bor97, Chap. 2])
we introduce the new graph operation of partial substitution that general-
izes Chvátal’s and Cunningham’s operations. We provide conditions that
guarantee that the resulting inequality after partial substitution of two
facets yields a facet again. Generalizing an idea of [BW97] we give then a
polynomial time separation algorithm for a class of inequalities constructed
by means of partial substitution.

Chapter 7: Finally we compare two different models for the reconstruc-
tion problem of discrete tomography that have been proposed in the liter-
ature. In the first the only requirement is that the configuration satisfies
the measurements. In the other model, in addition, convexity along the
lines of one direction is required. We employ exact solution algorithms that
compute for a given configuration of atoms the most different other config-
uration (with respect to symmetric difference) that is not distinguishable
via its given X-rays. This method permits to evaluate directly the infor-
mation content of the different models. Even though it is clear that the
model with line-convexity should permit less nonuniqueness than the un-
restricted model it is still surprising how large the nonuniqueness is for
the unrestricted problem. Entirely different is the situation for the model
with line-convexity for instance with high density where the worst possi-
ble symmetric differences we could observe were on average a lot smaller
than in the general (not line-convex) case. It is still not completely clear
yet, whether the assumption of line-convexity applies to the microscopic
applications.
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Finally—for the reader’s convenience—we provide a table showing the
interaction among the different parts. In Table 1.1 the rows are labeled
with the different applications (Discrete Tomography; Packing and Cover-
ing; and Stable Set Problems); the columns are labeled with the solution
approach (either via Polytopes or Algorithms).

Polytopes Algorithms

Discrete Tomography 3 2.5, 3.6, 4.6, 7
Packing and Covering 3.2 4
Stable Set Problems 5, 6 4.5, 5.3–5.7, 6.3

Table 1.1. Relation of the different parts of this disser-
tation to the covered topics.





CHAPTER 2

Preliminaries

The purpose of this chapter is to introduce the most important concepts
used later. Of course, this cannot be an in-depth description covering
every smallest detail. For further details on the involved topics we will
give pointers to the literature.

2.1. Discrete Tomography

In this section we briefly describe high resolution transmission electron
microscopy (abbreviated by HRTEM ). Then we will report on some mi-
croscope simulations we performed1 on tiny silicon wedges to create re-
alistic (though small) phantoms. Finally, we present the analysis of
these phantoms by the quantitative analysis of the information provided
by transmission electron microscopy (abbreviated by QUANTITEM ) by
Schwander, Kisielowski, Baumann, Kim, and Ourmazd [SKB+93] and
Kisielowski, Schwander, Baumann, Seibt, Kim, and Ourmazd [KSB+95]
in order to recover the number of atoms on the atomic columns.

2.1.1. High Resolution Transmission Electron Microscopy. In
the early 1930’s conventional light-microscopy was pushed to its theoret-
ical limits to provide a resolution of ca. 0.5 µm. Due to the demand for
even better resolutions people tried to replace the light beam of traditional
microscopy (whose relatively long wavelength caused the earlier mentioned
limits) by an electron beam (of shorter wavelength). Ernst Ruska (under
the supervision of Max Knoll) was in 1931/32 the first to build a ma-
chine utilizing an electron beam to look “through” a specimen. In 1986 he
was awarded the Nobel Prize in Physics for this outstanding accomplish-
ment (and fundamental work in electron optics). The first transmission

1jointly with P. Schwander, Institute for Semiconductor Physics, Walter-Korsing-
Str. 2, 15230 Frankfurt (Oder), Email: schwander@ihp-ffo.de
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electron microscopes (TEM) were mainly used to study biological spec-
imens. These TEM’s “almost” work like the light microscopes “except”
that the light beam is replaced by an electron beam and the optical ele-
ments are replaced by electron-optical analogues (e.g., lenses of glass are
replaced by electromagnetic or electrostatic lenses). Images are created in
a TEM by recording the electron beam intensities after it passed through
the specimen; areas of it with heavier atoms or greater thickness diffract
more electrons away from the detector; so they permit less electrons to
pass through. For TEM the picture depends strongly on the variation of
thickness and atomic number in the specimen.
For very thin specimen the limits of available resolution were pushed even

further down to atomic resolution with the introduction of high resolution
transmission electron microscopes (HRTEM). Almost no absorption occurs
for thin samples in a HRTEM with a high acceleration potential (circa 200
keV). So image formation is influenced by other principles. As there is no
loss of energy the resulting wave function Ψ of the interaction between the
electron beam and the electrostatic potential of the crystal is governed by
the time independent Schrödinger equation:

∇2Ψ(r) +
8π2me

�2
[E + V (r)]Ψ(r) = 0.(2.1)

Here, e is the electronic charge, E the acceleration potential of the mi-
croscope, � is Plank’s constant, m is the mass of the electron, and V (r)
is the crystal potential at position r. This creates an electron wave em-
anating from the “bottom side” of the crystal (if the electron beam hits
the specimen from “above”). It is this wave that is then magnified by
the electrostatic lens to obtain the final image. Unfortunately, at this
high magnification the lens distorts the image rather strongly; to worsen
matters, this distortion depends very sensitively on the imaging condition
(weather, horoscope, etc.) that cannot be fully determined. So tradition-
ally, given an HRTEM image the art is to do simulations of different objects
under different imaging conditions until a simulated phantom was created
that matched the obtained image. This explains the importance of simula-
tion. In the next subsection we will give an overview about one particular
simulation method: the Multislice Method by Cowley and Moodie [CM57].

2.1.2. Simulations and Analysis. The objectives of this subsection
are twofold. First we want to describe how the electron wave at the exit
face of a specimen can be calculated from the specimen’s crystal potential
and the imaging conditions using the multislice method. Then we will show



2.1. Discrete Tomography 13

how to analyze the (by the lense distorted) image, to recover the height
information using QUANTITEM.
The main issue with the simulation is to solve the Schrödinger equation

to obtain a description of the wave at the exit face of the specimen. To
do the simulation it is important to know that the involved energies are of
quite different orders of magnitude: on one side the low energy potential
field of the crystal and on the other side the electron beam of about 200
keV. These different scales lead to a situation, where most of the electrons
of the beam are scattered only forward (there is almost no backscattering)
and the scattering occurs only by a very small angle.
So under these approximations the simulation problem is more a problem

of wave propagation. This permits to do a slice-wise simulation, by cutting
the specimen into thin slices orthogonal to the beam’s direction. The whole
potential of the slice is projected onto the plane of the slice closer to the
electron beam’s source (entry face). It turns out that the interaction of
the beam with the projected potential on the entry face can be described
(under the given approximations) by a phase shift for the beam’s wave.
Mathematically speaking, the phase shift is done by multiplying the wave
function by exp(iφ(r)) where φ(r) is the phase shift incurred at location r.
The propagation of the resulting wave from one entry face to the next is
then done by using the Fresnel approximation.
The leaving wave is modeled as the sum of many spherical (actually,

in this approximation, paraboloidal) waves. Their joint effect on the next
entry plane is modeled by a convolution integral. Following the—then
novel—physical optics approach of Cowley and Moodie [CM58] (as done
in [CM57]) it turns out that the process is best described, by multiplying
the incoming wavefront with the phase shift exponential; the propagation
to the next layer is then facilitated by a convolution. Ishizuka and Uyeda
showed in [IU77] that the result of this computation is actually an approx-
imate solution to the Schrödinger equation (2.1). Furthermore, Goodman
and Moodie [GM74] show that in the case where the slice thickness goes
to 0, the simulation results converge to a solution of a modification of the
Schrödinger equation (2.1) that excludes backscattering—an assumption
we already agreed on.
Computationally, the convolution is better performed by using the fast

Fourier transform (first introduced by Good [Goo58] and later by Cooley
and Tukey [CT65] for power of two orders; for orders with other factor-
ization see for example de Boor [Boo89]) to transform the phase shifted
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wave function to Fourier space, the convolution reduces to a simple multi-
plication there. Then the result is inversely Fourier transformed back into
the real space. This process is done for all slices. Finally the magnifying
electrostatic lens is simulated by a similar procedure. For the simulation of
the HRTEM we used the package EMS by Stadelmann [Sta87]. As spec-
imen we always used a wedge of silicon, which is of face-centered cubic
(fcc) crystal type (for more on crystallography see for example Borchardt-
Ott [BO97]), embedded into a cube of 15× 15× 15 unit cells. The topmost
unit cells are removed at random. The resulting atomic columns viewed at
〈001〉 (from above) had varying heights between 0 atoms and 14 atoms.
From this wedge (its height-field is depicted in Figures 2.1(a), 2.2(a),

and 2.3(a)), with the help of EMS, we then computed the simulated image
for the resolutions 512×512, 2048×2048, and 4096×4096 subdivided into
30 slices in each case. The simulated images are given in Figures 2.1(b),
2.2(b), and 2.3(b). It turned out that the (later given) analysis for the
phantoms with resolution 2048 × 2048 and 4096 × 4096 was the same,
thereby indicating a certain degree of convergence. So we can next turn
our attention to the question of analysis of these pictures.
In [KSB+95] it is shown that even though the image gets distorted by

the lens some structural properties are preserved. It turns out that for
important specimen examples like Silicon in direction 〈100〉 and Germa-
nium in direction 〈100〉 and 〈110〉 the wave function at the exit face of the
specimen can be well approximated by the superposition of only two Bloch
waves (fundamental solutions of the underlying PDE). The coordinates
(with respect to the intensity of two excited Bloch waves) of the intensities
of all solutions to the PDE that fulfill the necessary boundary and initial
value conditions all lie on an ellipse. Furthermore, the angle (to a fixed
reference point on the ellipse’s rim) corresponds to the height of the sample
at that place. This all holds for lattice directions and the two beam case.
In the case of lattice directions an atomic column really influences only a
small corresponding area—the height information is localized. [KSB+95]
observe that the image maintains this property after the lens magnified
and distorted it; that is, images can still be composed of two basis images
(approximately).
In [KSB+95] this insight is utilized by segmenting the picture into small

rectangles that are mostly influenced by only a single atomic column. Each
of these rectangles is considered an image vector. By translating them, the
center of gravity of all of these vectors is moved to the origin. Next the
covariance matrix of the image vectors is computed and for it a principal
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(a) Height of the wedge. (b) HRTEM simulation.
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values.

Figure 2.1. HRTEM-simulation of a 15×15×15-wedge
at resolution 512× 512. The tiny(!) numbers in (a) show
the heights of the corresponding columns.



16 Preliminaries

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1
1

1
1

1
1

1
1

1

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2
3

3
3

3
3

3
3

3

3
3
3

3
3

3
3

3

3
3
3

3
3

3
3

3

3
3
3

3
3

3
3

3

3
3
3

3
3

3
3

3

3
3
3

3
3

3
3

3

3
3
3

3
3

3
3

3

3
3
3

3
3

3
3

3

3
3
3

3
3

3
3

3

3
3
3

3
3

3
3

3
3

3
3

3
3

3
3

3

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4
4

4
4

4
4

4
4

4

5
5
5

5
5

5
5

5

5
5
5

5
5

5
5

5

5
5
5

5
5

5
5

5

5
5
5

5
5

5
5

5

5
5
5

5
5

5
5

5

5
5
5

5
5

5
5

5

5
5
5

5
5

5
5

5

5
5
5

5
5

5
5

5

5
5
5

5
5

5
5

5

4
4
4

4
4

4
4

4
5

5
5

5
5

5
5

5

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6

6
6
6

6
6

6
6

6
7

7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7
7

7
7

7
7

7
7

7

8
8
8

8
8

8
8

8

8
8
8

8
8

8
8

8

8
8
8

8
8

8
8

8

8
8
8

8
8

8
8

8

8
8
8

8
8

8
8

8

8
8
8

8
8

8
8

8

8
8
8

8
8

8
8

8

8
8
8

8
8

8
8

8
8

8
8

8
8

8
8

8

9
9
9

9
9

9
9

9

9
9
9

9
9

9
9

9

9
9
9

9
9

9
9

9

9
9
9

9
9

9
9

9

9
9
9

9
9

9
9

9

9
9
9

9
9

9
9

9

9
9
9

9
9

9
9

9

9
9
9

9
9

9
9

9

9
9
9

9
9

9
9

9

9
9
9

9
9

9
9

9

5
5
5

5
5

5
5

5
8

8
8

8
8

8
8

8

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10
9

9
9

9
9

9
9

9

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11
10

10
10

10
10

10
10

10

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

9
9
9

9
9

9
9

9
10

10
10

10
10

10
10

10

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

11
11
11

11
11

11
11

11
14

14
14

14
14

14
14

14

14
14
14

14
14

14
14

14

14
14
14

14
14

14
14

14

14
14
14

14
14

14
14

14

14
14
14

14
14

14
14

14

14
14
14

14
14

14
14

14

14
14
14

14
14

14
14

14

14
14
14

14
14

14
14

14
14

14
14

14
14

14
14

14

14
14
14

14
14

14
14

14

11
11
11

11
11

11
11

11

14
14
14

14
14

14
14

14

13
13
13

13
13

13
13

13

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

13
13
13

13
13

13
13

13

12
12
12

12
12

12
12

12

14
14
14

14
14

14
14

14

12
12
12

12
12

12
12

12

9
9
9

9
9

9
9

9

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1

1
1
1

1
1

1
1

1
2

2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

2
2
2

2
2

2
2

2

1
1
1

1
1

1
1

1
3

3
3

3
3

3
3

3
4

4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4

4
4
4

4
4

4
4

4
5

5
5

5
5

5
5

5

5
5
5

5
5

5
5

5

5
5
5

5
5

5
5

5
6

6
6

6
6

6
6

6

6
6
6

6
6

6
6

6
7

7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

7
7
7

7
7

7
7

7

6
6
6

6
6

6
6

6
8

8
8

8
8

8
8

8

8
8
8

8
8

8
8

8

8
8
8

8
8

8
8

8
9

9
9

9
9

9
9

9
10

10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10

10
10
10

10
10

10
10

10
11

11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

11
11
11

11
11

11
11

11
12

12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12

12
12
12

12
12

12
12

12
11

11
11

11
11

11
11

11

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

13
13
13

13
13

13
13

13

12
12
12

12
12

12
12

12
11

11
11

11
11

11
11

11

11
11
11

11
11

11
11

11

9
9
9

9
9

9
9

9

(a) Height of the wedge. (b) HRTEM simulation.
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(d) Weights of the largest eigen-

values.

Figure 2.2. HRTEM-simulation of a 15×15×15-wedge
at resolution 2048× 2048.
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(a) Height of the wedge. (b) HRTEM Simulation.
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(c) Coordinates of the image-cells with
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Figure 2.3. HRTEM-simulation of a 15×15×15-wedge
at resolution 4096 × 4096.
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component analysis is done. The image vectors of the two most influential
principal components correspond now to the intensities of the magnified
(and distorted) two Bloch waves, so in theory it suffices to express all other
image vectors as linear combinations of these two and then to read off the
angle on the ellipse to infer the height. Up to now we have only said, that
the angle of the ellipse is related to the height of the column. In [KSB+95]
two circumstances are described among others, that permit to make this
relation fully precise:
1. if the sample thickness is distributed uniformly, then the local density
of the image vectors on the ellipse rim is inversely proportional to the
local rate of path traversal on the rim;

2. if there is very little noise, then the discrete nature of the different
heights leads to a clustering of imagevectors on the ellipse rim corre-
sponding to the different heights.

For our experiments we cut out a rhombic region around the centers of
the columns (tiles of the Voronoi diagram of the projection; if in the pro-
jection dumbbells occur then they are first contracted) and then used the
pixels inside it to form the image vectors. Then we computed the principal
components for the resolutions 512 × 512, 2048 × 2048 and 4096 × 4096
and plotted their projections onto the two eigenimages with the largest
eigenvalues in Figures 2.1(c), 2.2(c), and 2.3(c), respectively. The quality
of the simulation and analysis can be inferred from the values of the largest
eigenvalues. Theory says, that there should be two significant eigenvalues
and all others should be smaller than 0.05, see Figures 2.1(d), 2.2(d), and
2.3(d). For the lowest resolution, the picture violates this; but for the two
better resolutions this criterion is fulfilled. Actually, one would expect both
the largest two eigenvalues to be similar in magnitude; but as the wedges
we study are even thinner than the theory requires, we see only a small
piece of the ellipse rim and that looks locally like a line; so one eigenvalue
should (and does!) dominate the other one.
The projection onto the main eigenimages in Figure 2.1(c) reveals only

little information for the lowest resolution, as the incurred errors are too
large. But in Figures 2.2(c) and 2.3(c) there is clearly a motion from the
left (corresponding to columns of height 0) to the right (corresponding to
columns of height 14). The vertical expansion is mainly due to errors at
the boundary of the sample and the fact that the sample is still very thin
compared to the extinction length that lies somewhere between 150 and
200 atoms. Because there is almost no change between the simulations
with 2048 × 2048 and 4096 × 4096 the simulation should be stable now.
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(a) (b) (c)

(d) (e) (f)

Figure 2.4. Comparison of the most (top) and sec-
ond most (bottom) dominating eigenimages for HRTEM-
simulations of a 15×15×15-wedge at resolution 512×512,
2048 × 2048, and 4096× 4096 (from left to right).

This impression is also verified by the large similarities between the two
eigenimages at medium resolution (2.4(b), 2.4(e)) and those at high resolu-
tion (2.4(c), 2.4(f)), respectively. Even though the second most important
eigenimages 2.4(e), 2.4(f) are of very little influence here, the slight asym-
metry between their top and bottom part can be nicely explained by the
fact that the bottom-top direction is the direction along which the wedge
rises; so there should be some asymmetry.
After we established the quality of the two better simulations it turns

out that the dots in the projection image onto the two eigenimages with
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the largest eigenvalues in 2.2(c) and 2.3(c) really show a nice clustering.
Counting the clusters easily reveals 14 clusters; only the clusters corre-
sponding to columns of height 0 and 1 cannot be separated. But this
demonstrates, in principle, that with the outlined techniques it should be
possible to count atoms in different columns (perhaps up to an error of
±1).

2.1.3. Basics of Discrete Tomography. We use the general setting
of a d-dimensional Euclidean space Ed, with d ≥ 2, though only the cases
d = 2, 3 are relevant for electron microscopic applications. Let S1,d be the
set of all 1-dimensional subspaces in Ed, and let Fd denote the family of
finite subsets of �d. For F ∈ Fd let |F | be the cardinality of F . A vector

v ∈ �
d \ {0} is called a lattice direction; L1,d denotes the subset of S1,d

spanned by a lattice direction. For S ∈ S1,d let A(S) denote the family of
all lines parallel to S. The (discrete) 1-dimensional X-ray parallel to S of

a set F ∈ Fd is the function XSF : A(S)→ �0 = � ∪ {0} defined by
XSF (T ) = |F ∩ T |, for T ∈ A(S).

Since F is finite, the X-ray XSF has finite support T ⊂ A(S).
Actually, in practice the microscope is tilted only in a single plane; there-

fore, all the measurement directions lie in this plane and the (originally
3-dimensional) problem decomposes naturally into a set of independent, 2-
dimensional problems. So henceforth we will mainly study 2-dimensional
problems.
In the inverse reconstruction problem, we are given candidate functions

φi : A(Si) → �0 , i = 1, . . . , m, with finite support and want to find a set

F ⊂ �
d with corresponding X-rays. More formally, for S1, . . . , Sm ∈ L1,d

pairwise different, the most important algorithmic task in our context can
be stated as the following search problem:

Reconstruction (S1, . . . , Sm).

Instance: Candidate functions φi : A(Si) → �0 for i =
1, . . . , m.

Output: If the instance is consistent, a finite set F ⊂ �
d

such that φi = XSiF for all i = 1, . . . , m; other-
wise the answer no.

Clearly, when investigating the computational complexity of the preced-
ing problem in the usual binary Turing machine model one has to describe
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suitable finite data structures. We do not go into such details here but
refer the reader to Gardner, Gritzmann, and Prangenberg [GGP99]. For
the purpose of this dissertation, handling an input of m candidate func-
tions φ1, . . . , φm with supports T1, . . . , Tm, respectively, is facilitated with
the aid of a set G ⊂ �

d of candidate points. This set G consists of the
intersection of all (finitely many) translates of

�m
i=1 Si that arise as the

intersection of m lines parallel to S1, . . . , Sm with �d, respectively, whose
candidate function value is nonzero, i.e.

G = �d ∩
m�

i=1

�

T∈Ti

T.

To exclude trivial cases we will in the following always assume that G 
= ∅
and that

�m
i=1 Si = {0}. Hence, in particular m ≥ 2.

The incidences of G and Ti can be encoded by an X-ray–candidate-point
incidence matrix Ai. To fix the notation, let G consist of, say, N points,
let Mi = |Ti| and M = M1 + · · · + Mm. Then the incidence matrices
Ai ∈ {0, 1}Mi×N can be joined together to form a matrix A ∈ {0, 1}M×N .
Identifying a subset of G with its characteristic vector x ∈ {0, 1}N , the
reconstruction problem amounts to solving the integer linear feasibility
program

Ax = b, s.t. x ∈ {0, 1}N ,(2.2)

where bT = (bT
1 , . . . , bT

m) contains the corresponding values of the candidate
functions φ1, . . . , φm as the right hand sides of A1, . . . , Am, respectively.
For m = 2 the matrix A is totally unimodular and this permits already

a polynomial time solution, see Section 2.5. For m = 3 the system Ax = b
has the form of a planar 3-dimensional transportation problem; for more
on transportation problems see Emeličev, Kovalev, and Kravcov [EKK85,
Chapters 6–8].
Let us point out here in passing that more general inverse discrete prob-

lems can be modeled in a similar way. In fact, query sets (which are just
lines in the case of the discrete tomography considered here) could be cho-
sen in various different and meaningful ways. (For instance, if the lines are
replaced by the translates of some k-dimensional subspaces we obtain the
reconstruction problem for discrete k-dimensional X-rays.) For example,
Chapter 4 is phrased in this more general language of query sets.
For m ≤ 2 it is well-known that Reconstruction (S1, . . . , Sm) can be

solved in polynomial time, see Section 2.5 for a list of different reasons.
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However, Reconstruction (S1, . . . , Sm) becomes ��-hard, for m ≥ 3,
[GGP99]. This means, that (unless � = ��) exact solutions of (2.2) require
(in general) a superpolynomial amount of time.
Let us stress the fact that while the solutions of the polynomial-time

solvable LP-relaxation of (2.2) does provide some information about (2.2)
(see [FSSV97], and in this thesis Sections 3.4 and 4.4), it is the goal to
solve (2.2) rather than its LP-relaxation, since the objects underlying our
prime application are crystalline structures forming (physical) sets of atoms
rather than ‘fuzzy’ sets; for some additional discussion of this point see
[GPVW98].

2.2. Computational Complexity

In this section we give an overview of the theory of computational com-
plexity. This will not be an in-depth description but we intend to define
the terms used in Chapter 4 and Section 5.4. For further details on com-
putational complexity see the books by Garey and Johnson [GJ79] and by
Papadimitriou [Pap94].
First we need a concept to compare running times (frequently also mea-

sured by the number of primitive instructions it takes to solve a problem)
of different algorithms. This concept should be able to distinguish among
different orders of magnitude of growth (e.g., n, and n2, and 2n should
be different by this measure). But as CPU clock-speeds of computers vary
strongly, this concept should not distinguish between n2 and 4n2. A side ef-
fect of this requirement—almost everybody will agree, that between n2 and
4n2 there is only a small difference—is that, to make this an equivalence
relation, transitivity requires also to regard n2 and 10100n2 as equivalent.
The big-Oh notation is used to measure complexity. For two functions
f, g : � 
−→ � one says that f(n) = O(g(n)) if there exists a c > 0 such
that for almost all n ∈ � holds f(n) ≤ c · g(n).
Computational complexity is concerned with measuring the difficulty of

various problems and the efficiency of algorithms to solve them. Mathe-
matically speaking, an algorithm solves a problem Π if it provides for every
possible input instance I a solution. Most important for our work here are
three particular classes of problems: decision problems, search problems,
and optimization problems.
For a decision problem only the answers yes and no are permitted,

while in a search problem either a certain configuration or the answer
no is expected. Instances with answer yes are called yes-instances. For
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optimization problems the answer is a configuration with a “best possible”
value. To measure the difficulty of a particular instance I we consider
a reasonable binary encoding. The length of this encoding (that is the
number of 0’s and 1’s) is then the encoding length of this instance, denoted
by |I |. As the model of computation we use that of a deterministic Turing
machine (DTM).
Next we seek a coarser way to distinguish complexities of different de-

cision problems. On one side we want to put the problems that have
algorithms that need only time polynomial in the encoding length, on the
other side we want to put the problems that appear to be more difficult.
Algorithms that run in polynomial time on a DTM are called polynomial.
We say that a problem Π belongs to � if there is a polynomial time algo-
rithm for Π. We use the partial order ∝ to compare the complexities of
different problems. A polynomial transformation of instances of a prob-
lem Π to instances of a problems Π′ is a polynomial algorithm that maps
instances of Π to instances of Π′. We say for two decision problems that
Π ∝ Π′ if there is a polynomial transformation f from Π to Π′ such that
f(I) (for an instance I of Π) is a yes-instance of Π′ if and only if I is a
yes-instance of Π. For Π ∝ Π′ we say that Π′ is at least as difficult as Π,
because a polynomial time algorithm for the solution of Π′ together with
the polynomial transformation from Π to Π′ would yield also a polynomial
time algorithm for Π.
Next one wonders of course whether all decision problems belong to �;

the answer is unknown. But to obtain an idea what might be beyond �
in 1971 Cook (though he uses a slightly different notion of ∝) introduced
the class ��. A problem Π belongs to �� if there exists a polynomial pΠ

so that for every yes-instance I of Π there exists a proof of the fact that I
is a yes-instance of encodings length at most pΠ(|I |). Similarly, a problem
Π belongs to co-�� if there exists a polynomial qΠ so that for every no-
instance I of Π there exists a proof of the fact that I is a no-instance of
encodings length at most qΠ(|I |). The underlying computational model is
here the model of a nondeterministic Turing machine (NTM). Obviously,
every problem in � belongs to ��.
Cook succeeded in proving for a first problem (that of satisfiability) that

it is among all problems in �� the “most difficult” problem, therefore he
called it ��-complete. In the following year Karp [Kar72] utilized Cook’s
theorem to prove for a list of 20 more problems, that they are ��-complete.
Among them is the problem Clique whose ��-completeness we will use
later in Section 5.4.
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Clique.

Instance: A graph G and a positive integer k.

Question: Does G have a set of k mutually adjacent vertices?

It is still an open question whether � = �� or not.
Then there is the class of ��-hard problems. Informally speaking, an

optimization or search problem is called ��-hard, if the existence of a
polynomial algorithm for its solution would imply that all problems in ��
are solvable in polynomial time.
Finally, we need to speak about optimization problems and in particular

approximation algorithms; for a more detailed description see Crescenzi
and Kann [CK98]. For an instance I of an optimization problem Π and
an approximation algorithm A (an algorithm that has as output a feasible
though possibly non-optimal solution) we denote by OPT(I) the optimal
value and by A(I) the value obtained by algorithm A. For every instance I
the performance RA(I) is defined by RA(I) = A(I)/OPT(I). The absolute
performance ratio RA is defined as the supremum of all numbers that are
joint lower bounds of RA(I) for all I if Π is a maximization problem and
defined as the infimum of all numbers that are joint upper bounds of RA(I)
for all I if Π is a minimization problem.

2.3. Polytopes, Linear and Integer Programming

For a finite set X ⊂ �
n with X = {x1, x2, . . . , xm} the convex hull

conv(X) is defined by conv(X) = {λT (x1, x2, . . . , xm) : λ ∈ �
n , λ ≥

0 and λT1 = 1}. A set P that is the convex hull of finitely many vectors is
called a polytope. It is well-known that every polytope can equivalently be
described as a bounded region given as the finite intersection of halfspaces
(see [Zie95, Thm. 2.15]). Hence for every polytope P in �n there exists a
k ∈ �, a k × n matrix A and a k-vector b so that P = {x ∈ �

n : Ax ≤ b}.
An inequality πT x ≤ β is valid for a polytope P if x ∈ P implies πT x ≤ β.
A hyperplane H = {x ∈ �

n : πT x = β} is called supporting for a polytope
P if either πT x ≤ β or πT x ≥ β is valid for P and H ∩ P 
= ∅. For a
hyperplane H that supports P the set H ∩P is called a face of P (at times
also the sets ∅, P are considered faces of P ). Faces of polytopes are again
polytopes.
For a finite set X ⊆ �

n with X = {x1, x2, . . . , xm} the linear hull is
defined by lin(X) = {λT (x1, x2, . . . , xm) : λ ∈ �

m}. The affine hull aff(X)
of X is defined by aff(X) = {λT (x1, x2, . . . , xm) : λT1 = 1}. The vectors in
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a finite set X ⊆ �
n are called linearly independent if λT (x1, x2, . . . , xm) =

0 implies λ = 0. A finite set of vectors X = {x1, x2, . . . , xm} ⊆ �
n is

called affinely independent if {x1−xm, x2−xm, . . . , xm−1−xm} is linearly
independent. The dimension of a polytope is just the dimension of its
affine hull. A face F of a polytope P is called facet if dimF = −1+dimP.
Next we come to the more algorithmical problem of linear programming.

Given m, d ∈ �, c ∈ �
d , A ∈ �

m×d , a linear program is the task to max-
imize cT x with respect to Ax ≤ b. Whole books have been written about
linear (and integer) programming, see Schrijver [Sch89]; Grötschel, Lovász,
and Schrijver [GLS93]; and Nemhauser and Wolsey [NW88]. For a long time
the simplex method was the only algorithm to solve linear programs. But
it has been shown by Klee and Minty (1972) that (at least for all known
variants of the simplex method) there are examples whose solution require
exponential time to solve. A landmark result was Khachian’s proof (1979)
that the ellipsoid method can solve linear programs in polynomial time.
This was a theoretically important discovery, but it had little influence
on computer programs, as all implementations were (except for pathologi-
cal examples) slower than the simplex method. Karmarkar’s proof (1984)
that interior point methods can solve linear programs in polynomial time
was more influential for practical applications. Nowadays, interior point
methods are similarly quick in practice to solve linear programs.
An important feature of the simplex method for many applications is

that it always returns an optimal vertex. Interior point methods do not
guarantee this. But by choosing a random direction in the optimal face
and then reoptimizing in it, one obtains with high probability an optimal
vertex. Also, by iteratively perturbing the objective function it is possible
to obtain an optimal vertex in polynomial time. Finally a method described
by Megiddo [Meg91] permits to obtain a primal dual optimal solution in
polynomial time.

Integer Programming is the art to solve linear programs that have addi-
tional integrality restrictions on (some of) their variables. H. W. Lenstra,
Jr. (1983) showed that integer programming in fixed dimension is solvable
in polynomial time; a result of Karp [Kar72] however shows, that the task
to find a 0− 1-vector that satisfies Ax = b is already ��-complete.
An important special case in which integer programming is just as easy

as linear programming occurs if the matrix is totally unimodular. A ma-
trix A ∈ �

m×n is called totally unimodular (abbreviated by TU) if each
subdeterminant of A is in {0,±1}. In particular, if A ∈ �

m×n is TU then
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A ∈ {0,±1}m×n. Of all the results that are known about totally unimod-
ular matrices we need only the following three results later in this thesis:

1. If A is TU, so is AT .
2. If each collection of columns of A can be split into two parts so that
the sum of the columns in one part minus the sum of the columns in
the other part is a vector with entries only 0, +1, and −1 then A is
TU.

3. If A is TU, b, b′, d, d′ are integral and P (A, b, b′, d, d′) = {x ∈ �n : b′ ≤
Ax ≤ b and d′ ≤ x ≤ d} is not empty, then P (A, b, b′, d, d′) is an
integral polyhedron.

Even though the second criterion in [Sch89, Thm. 19.3(iv)] is cited from
Ghouila-Houri [GH62], our understanding of the main theorem of [GH62]
is that it requires slightly less to guarantee TU for a matrix.

2.4. Graph Theory and Graph Algorithms

In this section we give a brief introduction into those areas of graph
theory that we need later in this thesis. For a classical book on graphs (and
hypergraphs) see Berge [Ber70]; for news on algorithmical graph theory see
Jungnickel [Jun90].
A graph G consists of a finite set V of vertices and a set E of 2-element

subsets of V (called edges). Two vertices u, v ∈ V (G) are called adjacent
if {u, v} ∈ E. A vertex u is incident with an edge e ∈ E if there exists
another vertex v ∈ V \ {u} with e = {u, v}. Frequently we will abbreviate
the edge {u, v} by uv . The degree of v ∈ V in G is the number of edges
with which v is incident.
At times—when considering multigraphs—we will permit also that an

edge occurs more than once (this requires E to be considered a multiset)
or loops that are edges of the form {v, v} (this requires to speak no longer
of edges as subsets of V ). But most of the times we disallow multiple
edges and loops; so we do not want to be too formal about the necessary
formalities.
A walk of length k in a graph G is a sequence of vertices v0, v1, . . . , vk of

G such that {vi, vi+1} ∈ E for 0 ≤ i ≤ k − 1. A walk is called a path if all
the vi are different. A circuit is a walk that fulfills additionally v0 = vk.
Finally a cycle is a circuit such that all vertices vi for 0 ≤ i ≤ k − 1 are
different.
Two more classes of graphs are frequently needed later on. The complete

graph Kn on n vertices is a graph with vertex set V = {1, 2, . . . , n} and
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edge set E = {{i, j} : 0 < i < j ≤ n}. The cycle Cn has vertex set
V = {1, 2, . . . , n} and edge set E = {{1, 2}, {2, 3}, . . . , {n − 1, n}, {n, 1}}.
A digraph (also known as directed graph) D has again a finite set of

vertices V. Its set of arcs denoted by A (or K) is a subset of V × V \
{(i, i) : i ∈ V }. Again, one might need to permit multiple arcs or loops (of
the form (i, i)). A directed walk in a digraph D = (V, A) is a sequence of
vertices v0, v1, . . . , vk of G such that (vi, vi+1) ∈ A for 0 ≤ i ≤ k − 1. The
terms directed path, directed circuit, and directed cycle (often also named
dipath, dicircuit, and dicycle) are defined accordingly.
A graph or digraph (V, E) is called bipartite if there is a partition of V

into two sets V1, V2 such that there are no arcs (or edges) within V1 and
there are no within V2.
The categorical product D1 · D2 of two digraphs D1, D2 is defined by

V (D1 · D2) = V (D1) × V (D2) and A(D1 · D2) = {((u1, u2), (v1, v2)) :
(u1, v1) ∈ A(D1) and (u2, v2) ∈ A(D2)}, see Babai [Bab95]. Finally we
need to define a particular class of digraphs called lasso and denoted by
Ll1,l2 with l1 ≥ 0 and l2 > 0. The vertices of Ll1,l2 are {1, 2, . . . , l1 + l2}
and the arcs are {(1, 2), (2, 3), . . . , (l1 + l2 − 1, l1 + l2), (l1 + l2, l1 + 1)}.
Notice that L0,k is just a directed k-cycle. The digraph Pl for l > 0 will
denote the directed path of length l on l+1 vertices 0, 1, . . . , l. The notions
of categorical product and lasso will prove to be helpful in Section 5.3 and
Subsection 2.4.3.

2.4.1. Single Source Shortest Path Problems. One of the basic
algorithmic problems related to graphs is the single source shortest path
problem. An instance to the shortest path problem is a 3-tuple (G, s, c),
where G is a graph (or digraph), s is a vertex of G, and c associates a
cost (sometimes also called weight or length) to each edge (or arc) of G.
For the purpose of this dissertation we are only concerned with problems
with nonnegative weights, so c : E 
−→ �+ . The task is now to find a path
(in the case of a directed graph: to find a dipath) from s to every vertex
t ∈ V so that the sum of the cost of the edges belonging to this path is as
small as possible. Unless otherwise specified, we will always assume that
for the graph G under consideration the number of vertices is denoted by
n and the number of edges by m. Ahuja, Magnanti, and Orlin [AMO93]
report that the fastest known shortest path algorithm with a running time
of O(m+n log n) is due to Fredman and Tarjan (1984); this is a Fibonacci
heap implementation of Dijkstra’s classical algorithm. For sparse graphs—
that is, graphs with only very few edges—that fulfill m = O(n log n) a
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recent result by Thorup [Tho98] improves the best running time for the
undirected single source shortest path problem down to O(m). But it seems
that his algorithm reaches this linear performance only for very large n.
Furthermore, we will be concerned with directed graphs of high density;
this gives two more reasons for us not to rely on his result.

2.4.2. All-Pairs Shortest Path Problems. The instances of the all-
pairs shortest path problem are pairs (G, c) where G is again a (di-)graph
and c is the cost function. This time the task is to find shortest paths
between all pairs of vertices from G. An obvious solution method is to
apply the method of Subsection 2.4.1 for every vertex s of G. This yields
immediately an algorithm with worst case complexity O(nm + n2 log n).
This method is preferred for graphs that are not dense, as here the need
for only O(n+m) memory is an advantage.
Another method, which is a lot simpler to implement in practice than

the Fibonacci heap Dijkstra implementation, is the algorithm of Floyd-
Warshall. It has running time O(n3) so for dense graphs this is compet-
itive with the other method. But its memory requirement is of order n2,
independent of the graph’s density.

2.4.3. Shortest Path Problems in Categorical Product Graphs.
This subsection is concerned with an important algorithmical building
block for separation and recognition methods in Chapter 5. We consider
here only digraphs of the form Ll1,l2 ·D, where D is assumed to be a dense
digraph. Let D have vertex set V and arc set A. We always assume that D
has a cost function c associated with it. In the new graph Ll1,l2 ·D we define
the cost of the arc ((i, u), (j, w)) ∈ A(Ll1,l2 · D) (that is, (i, j) ∈ A(Ll1,l2)
and (u, v) ∈ A(D)) to be c((u, w)). We are interested in finding all shortest
paths from vertices of type (1, v) to vertices of type (l1 + 1, v). One can
solve this by solving an all-pairs shortest path problem as outlined in
Subsection 2.4.2. Let l = l1 + l2. The first method of Subsection 2.4.2
gives a running time of O(lnm + ln2 log(ln)); the second needs runtime
O(l3n3). The memory requirements are O(l(n + m)) and of order l2n2,
respectively.
In this subsection we describe a new algorithm with running time

O(n3(log l1 + log l2+ log n)) and memory requirement O(n2). We will give
the proof by considering shortest path problems for Pk · D, L0,k · D, and
only then for Ll1,l2 · D.
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First we study the problem to find a shortest path from (0, u) to (k, v)
in the digraph Pk · D. Let C be the matrix of distances of D, that is

(C)i,j =

�
+∞ if (i, j) /∈ A,

c((i, j)) if (i, j) ∈ A.

We can interpret the matrix C as the answer to our particular shortest
paths problem for P1 ·D by interpreting the row v of C as labeled by (0, v)
and column w of C as labeled by (1, w). Then the entry Cvw corresponds
to the distance of the shortest path from (0, v) to (1, w) in P1 ·D. Next we
want to extend this interpretation to Pk · D for k > 1.
For two distance matrices C and C′ of dimensions n × n we define the

operation ⊗ by

(C ⊗ C′)ij = min
1≤k≤n

(Cik + C′
kj).

Here we use of course a+∞ = +∞ and min(a,∞) = a for a ∈ �+∪{+∞}.
It is important to notice that ⊗ is associative; therefore there is no trouble
in defining the k-th power of C with respect to ⊗ for k > 0; denote it
by C(k). Now it is very easy to verify that the matrices C(k) have again
an important interpretation for our particular shortest path problem on
Pk · D. The entry (C(k))vw is the distance of a shortest path from (0, v)
to (k, w) in Pk · D. As the binary method of exponentiation (for example
given in Knuth [Knu80, Subsection 4.6.3]) requires only that the underlying
operation is associative this fact gives immediately an O(n3 log k) algorithm

to compute C(k). Thereby, our problem to find for every pair of vertices
u, v ∈ V a shortest (0, u)–(k, v) path in Pk · D can be solved in time
O(n3 log k).

Another interpretation of C(k) is that C
(k)
vw (for v 
= w) is the cost of a

(v, 1)–(w, 1) minimum cost path in L0,k ·D of length k (that is a path that

meets only k + 1 vertices). Now we define the matrix C̃ by

(C̃)uv =

�
C

(k)
uv if u 
= v,

0 otherwise.

The entry C̃vw corresponds to the distance of a minimum cost (v, 1)–(w, 1)
path of length 0 or k.
It is little surprising that we can compute now in O(n3 log n) the matrix

C̃(n). For its entry (C̃(n))vw it is simple to show that it is the length of
a minimum cost (v, 1)–(w, 1) path in L0,l2 · D. So we can compute all
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pairs minimum cost paths between layer 1 and layer 1 in L0,l2 · D in time
O(n3(log l2 + log n)).
Now, we are in good shape to solve the problem we set out to solve:

To compute the shortest distance from all vertices of type (1, v) to all
vertices of type (l1 + 1, v) in Ll1,l2 · D. Following the same idea as above,

it turns out that the matrix C(l1−1) ⊗ C̃(n) contains in its (u, v)-entry the
distance from (1, u) to (l1+1, v) in Ll1,l2 ·D. This algorithm takes only time
O(n3(log l1 + log l2 + log n)), is simple to implement, has for dense graphs
a similar complexity as the Fibonacci heap implementation of Dijkstra’s
algorithm and as the Floyd Warshall algorithm, and requires only O(n2)
memory. But it remains open, which algorithm is the best in practice; of
course this depends heavily on the concrete application.
As a corollary to this (not really formulated) theorem we can show that

the following optimization problem is solvable in strongly polynomial time:

Remainder-Restricted-All-Pairs-Shortest-Walk.

Instance: A directed graph D = (V, A) with nonnegative
weights c and natural numbers q, t, r with q < t.

Output: For every pair u, v of vertices the distance of a
minimum weight walk between u and v that has
length at least r and whose length modulo t is
congruent to q.

So here is our Theorem:

Theorem 2.4.1.
The problem Remainder-Restricted-All-Pairs-Shortest-Walk can
be solved in time O(|V |3(log |V |+ log r + log t)).

Proof. Let l1 be the smallest integer that is at least r and is congruent
to q modulo t. Clearly, the encoding length of l1 is polynomial in the
encoding lengths of r, q, t and can be computed from them in polynomial
time. Let l2 = t. The main observation, which we need to prove the
assertion, is that a minimum weight walk from u to v in D of length at least
r and with remainder modulo t congruent to q is in 1–1-correspondence
to a shortest (0, u)–((l1 − 1) + 1, v)-path in Ll1−1,l2 · D. By the previous
remarks, we know that we can solve our restricted shortest path problem
in Ll1−1,l2 · D, with an O(n3(log l1 + log l2 + log n)) algorithm.
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2.4.4. Maximum Flow Problems. Themaximum flow problem mod-
els the task to transport as much of a liquid as possible from a given
source to a given sink respecting the given capacities on the arcs of the
directed graph. Formally speaking an instance is constituted by a 5-tuple
(V, A, u, s, t) where V and A are vertex and arc set, respectively; u asso-
ciates a nonnegative real to every arc; and s 
= t are vertices of (V, A) that
model the source and sink of the flow. The ue are called capacities. We
associate with every arc (i, j) a variable xij ; this variable describes the
amount of flow along this arc. Flow conservation requires for all nodes dif-
ferent from s and t that the amount of flow that enters the node also leaves
it. The total flow in the network equals the amount of flow that comes out
of the node s. Denote this flow by f =

�
j:(s,j)∈A xsj−

�
j:(j,s)∈A xjs. Next,

we state the problem formally.

max f

subject to

�
j:(i,j)∈A

xij −
�

j:(j,i)∈A

xji =

���
��

f if i = s,

0 if i ∈ V \ {s, t},
−f if i = t

(for i ∈ V )

0 ≤ xij ≤ uij for all (i, j) ∈ A.

For all the applications in this dissertation we can assume that uij ∈ �0 .
In [AMO93] it is reported that the highest-label preflow-push algorithm
solves the maximum flow problem and runs in O(n2√m) as analyzed by
Cheriyan and Maheshwari (1989).
For applications to discrete tomography we need a particular type of

network. A network (V, A, u, s, t) is called a unit capacity simple network
if all capacities are 1 and for every vertex v ∈ V \{s, t} holds that either the
number of incoming arcs or of departing arcs is at most 1. In [AMO93] is
reported that the unit capacity simple network flow problem can be solved
in O(m

√
n).

2.4.5. b-Matching and b-Covering Problems. Given an undirected
graph G = (V, E) and for every v ∈ V a bound bv ∈ �0 the Maxi-
mum-Cardinality-1-capacitated-b-Matching optimization problem is
the following:

Maximum-Cardinality-1-capacitated-b-Matching.
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Instance: A graph G = (V, E) and for every vertex v ∈ V a
capacity bv ∈ �0 .

Output: A subset M of E of maximum cardinality such
that every vertex v ∈ V is incident with at most
bv edges of M.

Recall that we use the shorthand n = |V | and m = |A|.
Different variants are known:
1. in the uncapacitated variant M is a multiset, so that M can contain
a single edge more than once;

2. in the perfect variant additionally a weight for every edge is given
and the task is to find a perfect b-matching (that is one, where every
vertex v is incident with exactly bv edges of M) of maximum weight.

Particularly important is the special case of b = 1; the resulting variant
of Maximum-Cardinality-1-capacitated-b-Matching is called Maxi-
mum-Cardinality-Matching. Edmonds was the first who presented an
algorithm with polynomial running time of O(n4) for this problem in 1965.
Nowadays (according to [AMO93]) the complexity is improved to O(m

√
n)

by Micali and Vazirani (1980). Both algorithms use augmenting paths to
improve a matching until it becomes maximal.
As Padberg and Rao [PR82] proved that the separation problem

for Maximum-Cardinality-1-capacitated-b-Matching problem can be
solved in polynomial time, it follows with [GLS93] that also Maximum-
Cardinality-1-capacitated-b-Matching is solvable in polynomial time.
But this algorithm is only an important tool to prove polynomiality in
theory; for all practical purposes it is less helpful as it involves the compu-
tationally very difficult—though polynomial—ellipsoid method.
But there is also a purely combinatorial approach to Maximum-Car-

dinality-1-capacitated-b-Matching, which we will outline next. This
approach is based on a transformation due to Berge [Ber70, Chapter 8].
We associate with G of the instance (G, b) a new graph Ḡ = (V̄ , Ē) called
the incremental graph. For v ∈ V let the set Av have elements ae

v for all
edges incident with v in G. So |Av| = degG(v). The set Bv has elements
bi
v for i = 1, 2, . . . , degG(v) − bv. Assume that all the Au’s and Bv ’s are
disjoint. Set V̄ =

�
v∈V (Av ∪ Bv). The set of edges is given by

Ē =
�

v∈V

�

e={u,v}∈E

degG(v)−bv�

i=1

{{ae
v, bi

v}} ∪
�

e={u,v}∈E

{{ae
u, ae

v}}.
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A matching saturates a vertex v if v is incident with one edge of M.
In [Ber70, Chapter 8, Thm. 1] it is proved, that matchings in Ḡ that
saturate all vertices contained in the B-sets correspond to 1-capacitated-
b-matchings of G. The correspondence holds also for matchings and 1-
capacitated-b-matchings of maximum cardinality.
Now, to obtain a solution algorithm, it is simple to construct directly an

initial matching that saturates all the b-vertices in Ḡ. Notice, that applying
an augmenting path to a matching that saturates all the b-vertices yields
another matching that saturates again all the b-vertices. So the algorithm
of Micali and Vazirani can be applied to Ḡ to obtain in polynomial time a 1-
capacitated-b-matching for G. Alternatively, the notion of alternating paths
can be extended from matchings to 1-capacitated-b-matchings, thereby
providing a way to modify the known matching algorithms so that they
can directly work on G (without the need to take the detour via Ḡ).
Later, for the approximation algorithms in Chapter 4 we need an unusual

covering problem that can be easily solved with the help of a 1-capacitated-
b-matching of maximum cardinality.

Minimum-b-Covering.

Instance: A graph G = (V, E) and for every vertex v ∈ V a
capacity bv ∈ �0 .

Output: A subset M of E of minimum cardinality such
that every vertex v ∈ V is incident with at least
bv edges of M.

An instance (G, b) of Minimum-b-Covering can be solved by first using
Maximum-Cardinality-1-capacitated-b-Matching for (G, b). Denote
the solution byM. Then we greedily add unused edges to fulfill the covering
condition. But only edges are added, that help to cover at least one of its
ends. Denote the set of added edges by A. Clearly, by construction M ∪A
is a b-cover for G.
Suppose it is not minimal; then there exists a b-cover C for G with

|C| < |A| + |M |. We say that an edge e = {u, v} of a set of edges F
has effect one if the covering condition for F is fulfilled with > at exactly
one of the vertices u, v. Now we remove successively edges of effect one
from C and put them into a set A′. After finishing this procedure the
remaining edges are put into the set M ′. Now M ′ is a b-matching for G,
as it contains no more edges of effect one. Because M is a b-matching
of maximum cardinality, |M ′| ≤ |M |. So from |C| < |A| + |M | we can
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conclude that |A′| < |A|. But this is impossible, since the edges of M and
M ′ contribute always an effect of two to the b-covering of G, so we obtain
from double-counting the identities 2|M |+ |A| =�v∈V bv = 2|M ′|+ |A′|.
So we can conclude that also Minimum-b-Covering can be solved in

polynomial time.

2.4.6. Stable Set Problems. A stable set S of a graph (V, E) is a
subset of V such that no two vertices of S are adjacent in (V, E). The
weighted stable set problem is then to find in the given graph with a
weight function on the vertices a stable set of maximum total weight. So
the optimization problem Stable-Set can be formulated in the following
way:

Stable-Set.

Instance: A graph G and weights wv for its vertices.

Output: A stable set of maximum weight.

The decision version of Stable-Set (that is the question: does there exists
a stable set of weight at least K for an instance (G, w, K)) is ��-complete
as a consequence of the ��-completeness of Clique, which was pointed
out in Section 2.2 already. The relation between them (and the reason for
their comparable complexity) is that a stable set in G corresponds to a
clique in the complement of G, and vice versa. For stable set problems in
general, graph-theoretic branch and bound algorithms have been proposed
in the literature. For example Babel [Bab93] reports the successful solution
of maximum weighted clique problems on random graphs with 500 vertices
and 50% edge density; furthermore sparser instances with up to 2000
vertices are solved.
Frequently, the weighted stable set problem (or equivalently the set

packing problem) is used only as one relaxation of a partitioning problem.
The other relaxation of the partitioning problem is a covering problem.
It is very difficult to put additional constraints that are not of packing
type into a combinatorial solution algorithm. The polyhedral approach to
the stable set problem though, as described for example in Borndörfer’s
dissertation [Bor97], permits easily to incorporate additional constraints
of covering type. For this reason, we want to outline next the polyhedral
approach to stable set problems.
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In a graph that is not connected, the stable set problem can be solved
by solving the problem for the different components separately; hence it
suffice to consider stable set problems only for connected graphs.
Let G = (V, E) be a connected, simple graph with |V | = n ≥ 2 and

|E| = m. The incidence vector of U ⊆ V is xU ∈ {0, 1}V such that xU
v = 1

if and only if v ∈ U. The stable set polytope of G, denoted by STAB(G), is
the convex hull of all incidence vectors of stable sets of G. Some well-known
valid inequalities for STAB(G) include the trivial inequalities (xv ≥ 0 for
v ∈ V ), the cycle inequalities (

�
v∈C xv ≤ k where C is the vertex-set of

a cycle of length 2k + 1), and the clique inequalities (
�

v∈K xv ≤ 1 where
K induces a clique). A clique inequality is called an edge inequality if the
clique has just two vertices. We define

ESTAB(G) = {x ∈ �V : x fulfills the trivial and edge inequalities},
CSTAB(G) = {x ∈ ESTAB(G) : x fulfills the cycle inequalities},
QSTAB(G) = {x ∈ ESTAB(G) : x fulfills the clique inequalities}.

Let AG ∈ {0, 1}|E|×|V | be the edge-vertex-incidence-matrix of G. We set
(AG)e,i = 1 if i ∈ e and = 0 otherwise. Now the stable set problem can be
formulated as the following integer program

max wT x

subject to

AGx ≤ 1
x ≥ 0
x ∈ {0, 1}|V |.

Computationally, the troublesome part of the preceding problem is the
requirement that x is integral, otherwise the machinery of linear program-
ming could solve the problem immediately.
In the polyhedral approach to this problem one tries to find additional

strong valid inequalities that describe STAB(G) more tightly; furthermore
it is desirable, that it is possible for given x∗ ∈ ESTAB(G) (or some other
relaxation) to find a violated inequality in this set; this problem is called
the separation problem. One starts then with solving the LP-relaxation
of the problem maxwT x such that AGx ≤ 1 and x ≥ 0. If the solution
is integral we are happy, as we found the optimal solution; otherwise we
search for a violated inequality and add it. If no violated inequality can be
found, we need to replace the given problem by two problems; assuming
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that for example x∗
v is fractional, the one problem is obtained by removing

v while in the other problem all neighbors of v are removed.

2.5. Five Methods for Two Directions

It has been frequently said in the literature—we have claimed this al-
ready too—that the reconstruction problem for two directions is solvable
in polynomial time. But most of the time writers are happy if they sketch
one method, thereby showing that it is indeed polynomial solvable. In-
stead, we explain the most common 5 methods to solve the problem for
two directions in polynomial time. By putting them next to each other
we want to give the reader the opportunity to compare them easily. In
particular, we point out for each method whether it can handle problems
where the measurements have errors.
For all methods we will use the ground set G = Nm × Nn. Without

loss of generality we can assume that n ≤ m. Suppose a set F ⊆ G is
X-rayed along the coordinate directions. Define the resulting row and
column sums r ∈ �

n
0 , c ∈ �

m
0 by ci = |{j : (i, j) ∈ F}| for i ∈ Nm and

rj = |{i : (i, j) ∈ F}| for j ∈ Nn.
We will start with the classical method due to Ryser [Rys63, Chapter 6],

[Rys57], also presented by Lorentz [Lor49] and Chang [Cha71].

2.5.1. Ryser’s Method. For the method of Ryser [Rys63, Chapter 6]
we invest O(n log n+m logm) time so that we can assume that the vectors
r and c are nonincreasing. Next, the sequence c̄ is computed from r by
c̄i = |{j : rj ≥ i}| for i ∈ Nm. Ryser proved that if

�k
i=1 ci ≤ �k

i=1 c̄i for
k ∈ Nm with equality for k = m then the problem has a reconstruction,
that is the row and column sums together are consistent.
For doing the reconstruction, we describe now Ryser’s method to recon-

struct the last column of the problem. After updating the row sums the
leftover problem is of size (m− 1)× n, and if properly doing this, the row
and column sums are still nondecreasingly ordered. Of the m-th column
{m} × Nn the positions that correspond to the cm largest row sums are
chosen, if ties occur, the element with the larger row index is chosen. The
row sums corresponding to the added atoms are decremented accordingly.
The tiebreaking rule guarantees that the updated row sums are again in
nondecreasing order. So this method runs in O(n log n +m logm + nm).
By using a denser output encoding, C. Dürr improved this algorithm so
that it has a run time of O(n log n+m logm).
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It will turn out, that this algorithm is faster than the other presented
algorithms. But we are not aware of any variant of this algorithm, that
could model more than two directions or that is able to handle erroneous
data in any reasonable sense.

2.5.2. Bipartite b-Matching. Another way to solve the reconstruc-
tion problem for two directions is to model it as a bipartite b-matching
problem. The vertex set is V = V1 ∪ V2 with V1 = {1} × Nm and
V2 = {2} × Nn. The edge set is defined by E = {{(1, i), (2, j)} : i ∈
Nm and j ∈ Nn}. Finally the bounds are

bk,l =

�
cl if k = 1 and

rl if k = 2.

It is simple to see, that for every solution F of the reconstruction problem
the set {{(1, i), (2, j)} : (i, j) ∈ F} is a solution to the maximum cardinal-
ity 1-capacitated-b-matching problem on (V, E, b). Similarly, every perfect
maximum cardinality 1-capacitated-b-matching M of (V, E, b) provides a
solution {(i, j) : {(1, i), (2, j)} ∈ M} to the reconstruction problem. If the
maximum cardinality 1-capacitated-b-matching M of (V, E, b) is not per-
fect then the reconstruction problem has no solution.
So the methods of Subsection 2.4.5 can be applied to obtain a solution.

Reconstruction problems for data with measurement errors can be similarly
approached by modifying the graph and then looking for a minimum cost
1-capacitated-b-matching.

2.5.3. Maximum Flow. The idea to solve the reconstruction problem
for two directions by a network flow approach has been frequently used
in the literature, see Slump and Gerbrands [SG82]; Anstee [Ans83]; and
Salzberg, Rivera-Vega, and Rodŕıguez [SRVR98]. We will briefly summa-
rize it here. The basic idea is to model the reconstruction problem as a
maximum flow problem on (V, A, u, s, t). The vertex set is V = ({1} ×
Nm)∪̇({2} × Nn)∪̇{s, t}. The arc set is defined by A = {((1, i), (2, j)) : i ∈
Nm and j ∈ Nn}∪̇{(s, (1, i)) : i ∈ Nm}∪̇{((2, j), t) : j ∈ Nn}. Finally the
capacities are c(1,i),(2,j) = 1 for all i ∈ Nm and j ∈ Nn, c(s,(1,i)) = ci for
i ∈ Nm and c((2,j),t) = rj for j ∈ Nm. Next, one of the maximum flow algo-
rithms of Subsection 2.4.4 can be used to compute a maximum flow. This
can be done in O((n+m)2

√
nm). If the maximum flow has value less than�m

i=1 ci or value less than
�n

j=1 rj then the instance (r, c) is inconsistent.

Otherwise the set of arcs from vertices of type (1, i) to vertices of type (2, j)
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corresponds to a solution of the reconstruction problem. It is possible, us-
ing standard techniques to transform this network into an unit capacity
simple network with O(nm) vertices and O(n2m+ nm2) arcs. This yields
for the specialized algorithm a performance of O((n2m+ nm2)

√
nm).

Again, it is simple to formulate and solve in this language reconstruction
problems for two directions where the measurements have errors.
Salzberg, Rivera-Vega, and Rodŕıguez [SRVR98] report that they were

successful in approximately solving reconstruction problems for more than
two directions by using a network model to solve pairs of directions ex-
actly while introducing only small errors into the other directions. It
is remarkable though, that they choose for their approach an extension
of the bipartite preflow-push algorithm (see [AMO93]) that runs in time
O(min(n, m)2nm) only. We think that the highest-label preflow-push algo-
rithm would provide immediately superior theoretical performance. Ahuja,
Orlin, Clifford, Tarjan [AOST94] report that the theoretical bound for flow
algorithms that exploit that the underlying network is bipartite is only
then better than the bound for non-bipartite algorithm, if the two vertex
sets of the bipartition have different orders of magnitude. But this as-
sumption is by most types of reconstruction problems with fixed direction
violated. The assumption can only be fulfilled if the underlying grids grow
in different directions with different speeds. But we are not aware of any
application where this assumption holds.

2.5.4. Linear Programming. Now we want to argue how to solve the
reconstruction problem for two directions with the help of linear program-
ming. For this it is essential to show that the matrix A (see Equation (2.2),
Section 2.3), that corresponds to a reconstruction problem with two direc-
tions is totally unimodular (TU), see Section 2.3. For the proof we will

use that for two directions holds A =
�

A1
A2

�
. By using the first property of

TU of Section 2.3 it suffices to show that AT = (AT
1 , AT

2 ) is TU. Notice
that AT

1 contains only a single 1 per row; the same holds for AT
2 . Given

a collection J of columns of AT we partition this collection into two sets
J1, J2, so that J1 contains the collection’s columns that belong to AT

1 and
the other set gets the remaining columns. Adding the columns in J1 and
then subtracting the columns of J2 we obtain for every entry (correspond-
ing to a row) a value in {0,±1} as each row of AT contains two one, and
the corresponding columns cannot be together in J1 or in J2. So by the
second property of TU we can conclude that AT is TU. By the third prop-
erty we know that P (A, b, b,0,1) is an integral polytope if it is nonempty.
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But if the measurements are consistent then there is at least one solution
and hence P (A, b, b,0,1) is nonempty. The vertices of P (A, b, b,0,1) are
then the incidence vectors of solutions to the reconstruction problem. Now
the algorithms to solve linear programs and compute a vertex of the op-
timal region given in Section 2.3 provide a polynomial way to solve the
reconstruction problem.
Again it is possible to model and solve the reconstruction problem for

data with errors. Even better, it is possible to model reconstruction prob-
lems with more directions and to obtain important information about the
solutions, see Sections 3.4 and 4.4.

2.5.5. Matroid Intersection. Before we can discuss how to describe
the reconstruction problem as a matroid intersection we need to explain
what a matroid is. A matroid is constituted by a finite ground set V and
M ⊆ 2V , so that

1. ∅ ∈ M,
2. if U ∈ M and W ⊆ U then W ∈ M, and
3. if U, W ∈ M and |U | > |W | then there exists an element t ∈ U \ W
such that W ∪ {t} ∈ M.

Sets that are elements of M are called independent. Now the most im-
portant observation in connection with discrete tomography is that the re-
construction problem for 1 direction corresponds to a maximization prob-
lem over a related matroid. We construct the column matroid Mc by
Vc = Nm × Nn and Mc contains exactly those subsets U of V that ful-
fill |{j : (i, j) ∈ U}| ≤ ci for all i ∈ Nm. The row matroid Mr has
the same ground set but Mr contains those subsets U of V that fulfill
|{i : (i, j) ∈ F}| ≤ rj for all j ∈ Nn. It is very simple to see that Mc and
Mr fulfill the matroid axioms. Of course for every lattice direction one can
build such a matroid. We call matroids of this type partition matroids. A
subset of V solves a reconstruction problem for that direction, if the subset
is independent and there does not exist a larger independent set. Obvi-
ously, a set that is independent inMc and inMr and that is of cardinality�m

i=1 ci =
�n

j=1 rj (this requires of course that the set is a independent

set of maximum cardinality in both matroids) solves the reconstruction
problem for two directions. If no such set exist, we can conclude that the
given reconstruction problem is inconsistent. The problem to compute a
set of maximum cardinality that is independent in two matroids is the
cardinality 2-matroid intersection problem.
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Usually, a matroid cannot be encoded by listing all its independent sets,
as there may be exponentially (in the size of the ground set) many in-
dependent sets. But this is unnecessary for our purposes; we will need
only a method to decide whether a given set U belongs to the matroid
or does not. This can be performed for Mc by just checking whether all
inequalities hold, so it takes O(mn). The same bound holds for Mr. Ed-
monds [Edm79] and Lawler [Law75] gave algorithms that can find indeed a
set of maximum cardinality that is independent in two matroids. The algo-
rithm uses iterative improvements in the same way as our approximation
algorithms in Chapter 4. For 2-matroid intersection it is possible to com-
pute in polynomial time an improvement set (though it could be arbitrary
large); but as our problems are ��-hard for 3 and more directions, we have
no way to compute improvement sets of arbitrary size in polynomial time.
Lawler’s algorithm takes O(nmR2 + nmR2nm) where R is the number
of elements an solution has. This number R is usually unknown, but we
know—for obvious reasons—that R = O(nm). So Lawler’s algorithm needs
for the reconstruction problem with two directions O(n3m3+n4m4). This
approach, to solve the reconstruction problem by matroid methods, was
presented by Gardner, Gritzmann and Prangenberg [GGP96]. On closer
inspection it turns out, that Lawler’s algorithm is a generalization of the
alternating path algorithms for matching.
Next, one wonders of course about the reconstruction problem for three

directions. Here we can provide two answers. The first is “yes the prob-
lem can be described by an intersection of three partition matroids” but
unfortunately the second answer is “no, it would be VERY, VERY surpris-
ing if there is an algorithm which can solve the three matroid intersection
problem in polynomial time.”
Some types of measurement error can be introduced into the two matroid

intersection model.



CHAPTER 3

Polytopes and Discrete Tomography

We study polyhedral methods to model and solve problems in discrete
tomography. The tomography polytope is studied and some of its facets
are described. These results are then implemented into an algorithm that
solves problems of size 70 × 70 on average within 7 minutes. Finally
new results on a question, raised by A. Kuba at a 1997 Castle Dagstuhl
workshop, are presented.
The results of this chapter are joint work with Peter Gritzmann.

3.1. Definitions and Preliminaries

First we associate with each position p of the set of possible locations

Ĝ a zero-one-variable xp. Let n̂ = |Ĝ|. The measurements are taken in m̂

different directions. We refer to subsets of Ĝ as lines (in later Sections also
called query sets) to stress the tomographic interpretation, even though we

permit these lines to be in fact arbitrary subsets. Each direction D̂i ⊆ 2Ĝ is
a set of disjoint lines in direction ui. Here ui might denote a true direction

of �3 or �2 or might just serve as another symbol for D̂i.

There are d̂i = |D̂i| measurements taken in direction D̂i. Let D̂ =�m
i=1 D̂i be the set of all measured lines. Let ẑ be the number of atoms to

be placed on Ĝ. The measured data are finally represented by a function

φ̂ : D̂ 
−→ Nn̂. The function φ̂ associates with each line T ∈ D̂ the measured

number of atoms φ̂(T ) in a solution x̄ along T, namely φ̂(T ) =
�

p∈T x̄p.

Henceforth, we will use bT as a shorthand for φ(T ).

An instance (Ĝ, D̂, b̂) stems from a geometric problem if there are di-

rection vectors u1, u2, . . . , um in �3 or �2 which describe the directions D̂i

and if

Ĝ =
�

T1∈D̂1,...,Tm∈D̂m

m�

i=1

Ti.
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We assume for geometric problems that the directions U = (u1, u2, . . . , um)

are always fixed and that the input is b̂T only.
Now we are prepared to state the following search problem:

Combinatorial-Reconstruction.

Instance: A set of candidate points G, sets of disjoint ‘lines’
Di ⊂ 2G for i = 1, . . . , m, and the measurements
b.

Output: An x ∈ {0, 1}W such that
�

p∈T xp = bT for all

T ∈ �m
i=1 Di or the answer no.

The problem Geometrical-Reconstruction(U) is defined analo-
gously, differing only in that the instances (b) describe only the measure-
ments, thereby the grid G and the directions U are not part of the input.
(All other geometric problems in this chapter are derived analogously from
the corresponding combinatorial problem.) For general problems (i.e. our
lines can be arbitrary sets) the Combinatorial-Reconstruction prob-
lem contains the problem of set partitioning, which is ��-hard as Lenstra
and Rinnooy Kan [LRK79] have demonstrated. In the more interesting
situation for discrete tomography the instances are always geometric. In
this case the results of Gardner, Gritzmann, and Prangenberg [GGP99]
show that for instances with at least three directions Geometrical-
Reconstruction(U) is ��-hard; note that U is not part of the input.
It is very natural to describe the reconstruction problem as an integer

linear program:

�

p∈T

xp = bT for all T ∈ D,(3.1a)

xp ≥ 0 for all p ∈ G,(3.1b)

xp ≤ 1 for all p ∈ G, and(3.1c)

x ∈ {0, 1}n.(3.1d)

Henceforth, we abbreviate the whole equation-system with Ax = b and
the subsystems corresponding to Di with Aix = bi. Let the convex hull of
solutions be P=. Denote with Q= its LP-relaxation. Notice, that by the
results of Subsection 2.5.4 for m ≤ 2 holds P= = Q=.
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The reconstruction problem is a feasibility version of a generalized set
partitioning problem. The classical set partitioning problem is well stud-
ied [BP72, BP75, BP76, CY92, BGL+92, HP93, ANS95, Tes94, Bor97] due
to its importance for crew-scheduling and other traffic problems.
Fishburn, Schwander, Shepp, and Vanderbei [FSSV97] first studied Q= in

the geometric case. They interpret the fractional solutions as ‘characteristic
vectors’ of fuzzy sets. This concept proves helpful if almost complete LP-
invariance (that is, that Q= has very low dimension) is given. But with no
LP-invariance at all, no new information can be gained by this approach.
So we need to study the ILP itself.
Notice that the previous description as an ILP might be highly re-

dundant. For example for T ∈ D̂i with b̂T = 0 we have xp = 0

for all p ∈ T. Therefore we can delete the points of Ĝ which are con-

tained in such a line T of zero-measure and set Gnew = Ĝ \ T and

Di
new = {S \ T : S ∈ D̂i and S ∩ T 
= ∅}, call this a 0-reduction. In

the same way lines T of full-measure with b̂T = |T | imply directly xp = 1
for all p in this T. So we can delete the corresponding points and set
Di

new = {S \ T : S ∈ D̂i and S ∩ T 
= ∅} and Gnew = Ĝ \ T, while the

measurements are updated by bnew
S∩T = b̂S − |S ∩ T | for all S ∈ Dnew \ {T}.

This is called a 1-reduction. These reductions can be applied iteratively
until the new problem is irreducible. Let G, n, D, A and b denote the pa-
rameters of this irreducible tomography problem. The construction of an
irreducible problem from an initial problem can be done in polynomial
time, therefore in the sequel we will always assume to be confronted with
reduced problems.
The next problem to define is the search problem of uniqueness:

Combinatorial-Uniqueness.

Instance: A set of candidate points G, sets of lines Di ⊂ 2G

for i = 1, . . . , m, the measurements b, and one
reconstruction y ∈ {0, 1}G.

Output: An x̄ ∈ {0, 1}G \y such that
�

p∈T x̄p = bT for all

T ∈ �Di or the answer no.

The problem Geometrical-Uniqueness(U) is defined analogously. It
follows from [GGP99] that for geometric instances with at least three di-
rections the problem of uniqueness is ��-hard. The ��-hardness in the
general (i.e. not necessary geometric) case is an easy consequence of the
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��-completeness of set partitioning. To see this, just augment a given in-
stance of set partitioning problem by adding its ground-set G as another
set. Obviously choosing the ground-set gives a solution to the new set parti-
tioning problem. But any other solution (given as proof of nonuniqueness)
is a solution for the original instance.
For the ILP the question is whether min yT x, x ∈ P= is equal to yT y

(the solution is unique) or if the solution is smaller; in the latter case
the reconstruction problem has more than one solution. Notice that the
��-completeness of (the decision version of) uniqueness implies that it is
already ��-complete to decide, whether P= has dimension greater than
zero.
Finally we have the problem to decide whether (U0, U1) is an invariant

set for the given measurement. Here U0 ⊆ G describes a set of positions,
where no atom can be placed, while U1 ⊆ G is the set of positions, where
always atoms have to be placed. So we can describe the decision problem
of invariance:

Combinatorial-Invariance.

Instance: A set of candidate points G, sets of disjoint ‘lines’
Di ⊂ 2G for i = 1, . . . , m, the measurements b,
and sets (U0, U1).

Question: Is it true that xi = 0 and xj = 1 for all x ∈ P=

and all i ∈ U0, j ∈ U1?

(The problem Geometrical-Invariance(U) is defined analogously, dif-
fering only in that the instances are required to be geometric.) This prob-
lem is in co-��, as it is easy to show that if (U0, U1) is not a set of in-
variance there exists a configuration x ∈ P= verifying this. Notice that a
given problem instance for reconstruction is uniquely solvable if and only
if the pair of sets (∅, {p ∈ G : yp = 1}) is invariant. This implies that
Combinatorial-Invariance is co-��-complete.
For the ILP the invariance problem is to show that P= is contained

in the hyperplane
�

p∈U1
xp − �p∈U0

xp = |U1|. This implies that to
decide whether P= is contained in a subspace of this type is already co-��-
complete.
As for an easier problem consider the problem of fractional-invariance

(LP-invariance), where an LP-invariant pair of sets (U0, U1) are sets such
that xi = 0 and xj = 1 for all x ∈ Q= and all i ∈ U0, j ∈ U1.
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Weak-Combinatorial-Invariance.

Instance: A set of candidate points G, sets of lines Di ⊂ 2G,
for i = 1, . . . , m, and the measurements b.

Output: Maximal sets (U0, U1) of LP-invariance.

(The problem Weak-Geometrical-Invariance(U) is defined analo-
gously, differing only in that the instances are required to be geometric.)
Both problems are polynomially solvable, see Section 3.4.
The previously given examples demonstrate that polyhedral combina-

torics provides a useful language to formulate a variety of different problems
in discrete tomography. Furthermore, as almost all stated problems are dif-
ficult (either they are ��-complete, ��-hard or they are co-��-complete),
and our problems have rather different variants, there is no hope for a sin-
gle, simple combinatorial algorithm to tackle all these problems. Therefore
to study the polyhedral structure of the involved objects allows a unifying
approach to all of them.

3.2. The Tomography Polytope

The polytope P= is an evil beast, it is already intractable to obtain its
dimension. Therefore it is not well suited for polyhedral studies. If we
want to prove that a certain inequality induces a facet F of P= we would
need to first compute d = dimP= to verify dimF = d − 1.
Therefore we introduce another integer linear programming problem:

max
�

p∈G

xp,

subject to
�

p∈T

xp ≤ bT for all T ∈ D,(3.2a)

xp ≥ 0 for all p ∈ G,(3.2b)

xp ≤ 1 for all p ∈ G,(3.2c)

x ∈ {0, 1}G.(3.2d)

Let P be the polytope defined as the convex hull of (3.2a)–(3.2d) and Q
its LP-relaxation, obtained by dropping constraint (3.2d). Notice that the
reconstruction problem is equivalent to finding a solution to (3.2a)–(3.2d)
of value z, the latter being the number of atoms. Now the problem has the
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form of a generalized set packing problem. Set packing problems have been
considered in [Pad73, BP76, Chv75]; Tesch [Tes94] and Borndörfer [Bor97]
studied polyhedral aspects of set packing to solve Dial-a-Ride problems of
different types.
Note that the set I = {x ∈ {0, 1}G : Ax ≤ b} is down-monotone (that

is x ≤ y ∈ I with x binary implies x ∈ I). Therefore P is a monotone
polytope, cf. Hammer, Johnson and Peled [HJP75]. To study P makes a
lot more sense than in the case of other problems like the traveling sales-
man problem. Because trying to get a solution for this packing problem
corresponds to ‘place’ as many atoms in the lattice as permitted. In the
case that the measurements have errors it is not a priorily clear, whether
the system with ‘=’ has a solution at all, but the problem with ‘≤’ allows
still meaningful approximate solutions; for more on approximate solutions
for discrete tomography, see Section 4.6.
A finite set V together with a set J ⊆ 2V constitutes an independence

system if J contains ∅ and if for every subset S of V with S ∈ J all subsets
of S are elements of J . Sets D /∈ J are called dependent sets and I ∈ J
are called independent. The minimally dependent sets are called circuits,
and sets B ⊂ V are called bases if they are maximally independent.
The rank of a set U ⊆ V, with respect to an independence system

(V,J ), denoted by rank(V,J )(U), is the size of a largest base of U. For
any independence system (V,J ) and any subset U of V, the inequality

�

p∈U

xp ≤ rank(U)(3.3)

is a valid inequality of P (J ) = conv{xS : s ∈ J }, called rank inequality;
it is said to be boolean, since all coefficients are zero-one. The inequality
(3.3) is called canonical face of P (J ) iff U = V. A subset U of V is called
closed if rank(U ∪ {p}) ≥ rank(U) + 1 for all p ∈ V \ U and U is called
nonseparable if rank(U) � rank(T )+ rank(U \T ) for all nonempty subsets
T of U with T 
= U. Obviously, if U is separable or is not closed then the
rank inequality (3.3) cannot define a facet.
It is an easy observation that (G, I) is an independence system. Hence

we can describe Q as an independence system polytope, and obtain the
following optimization problem:

max
�

p∈G

xp,
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subject to
�

p∈J

xp ≤ bT for all J ∈ ΩbT +1(T ) and all T ∈ D,(3.4a)

xp ≥ 0 for all p ∈ G,(3.4b)

xp ≤ 1 for all p ∈ G,(3.4c)

x ∈ {0, 1}G(3.4d)

with Ωk(M) = {J ⊆ M : |J | = k}. If this new problem has an optimal
solution of value z then the reconstruction problem has a solution. For
every line T ∈ D every J ∈ ΩbT +1(T ) describes in this (possible exponen-
tially sized) problem a circuit of the independence system (G, I). The set
of circuits C forms another hypergraph (G, C).
The polyhedra associated with the generalized set packing problem and

with the independence system problem are equal. But the LP-relaxation
(3.4a)–(3.4c) is worse (larger) than Q. So for computational studies the
system (3.2a)–(3.2c) is more attractive as it is the better, tighter approx-
imation of P (it is contained in the other LP-relaxation) and needs only
few inequalities. While the independence system formulation (3.4a)–(3.4c)
is computationally difficult and weak, it is theoretically well studied for
different hypergraphs (cliques, odd holes, odd anti-holes, anti-webs, and
generalizations); [NT74, Sek83, EJR87, CL88, CL89, Lau89] show that the
corresponding rank inequalities define facets. But unfortunately the hy-
pergraph of the tomography problem belongs to none of these classes.

3.2.1. Critical Graph of a Set-System. Given S ⊂ 2G the critical
graph HS(S) is defined to be the graph with vertex set G. Two different
vertices p, p′ ∈ G are adjacent in the critical graph if there exists a set I � p
with I ∈ S and I − p + p′ ∈ S . The set-system S is called equicardinal,
if all elements of S have the same cardinality. The next lemma is easy to
prove.

Lemma 3.2.1.
If the critical graph of the equicardinal set-system S is connected and G is
not empty, then the incidence vectors of S span a (|G| − 1)-dimensional
hyperplane

Let the critical graph HU (I) of an independence system (G, I) with rank
function rank(·) and with respect to a subset U of G be the critical graph
of the rank-maximal, independent subsets of U. It is always equicardinal.
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Proposition 3.2.2 ([Lau89], Thm. 3.2).
Let U be a closed subset of G and assume that the critical graph HU (I) of
(G, I) is connected. Then the rank inequality (3.3),

�
p∈U xp ≤ rank(U),

induces a facet of the polytope P (I).

Notice that for canonical faces the closedness condition is fulfilled triv-
ially.

3.2.2. Facts and Facets. Notice that P depends heavily on the mea-
surements b. Therefore we do not have a single, universal polytope Pn

for tomography problems on n positions but a family of polytopes PG,D,b

(though usually we will drop G, D, b, having in mind always a special
instance). This situation contrasts with the traveling salesman problem
(TSP), for which a universal TSP-polytope [GP85] for n cities can be for-
mulated. Therefore, we cannot expect any nontrivial inequality to be facet
defining for all tomography problems independent of b.
Nevertheless there are facets known. For example for monotone, fulldi-

mensional polyhedra the following holds (cf. Hammer, Johnson and Peled
[HJP75]):

Theorem 3.2.3.
For each p ∈ G, the inequality

xp ≥ 0

is facet-defining for P.

Of course here and in the sequel we will only consider 0-reduced tomog-
raphy problems, as in this case (G, I) is normal ({p} ∈ I holds for all
p ∈ G and Q and P are fulldimensional). Inequalities with right hand
side zero are called homogeneous. It is easy to see (cf. [HJP75]) that all
homogeneous inequalities for Q are of the form xp ≥ 0 for some p ∈ G.
The next natural question is to characterize the structure of nonho-

mogeneous facets of P. The following theorem from [HJP75] answers this
partially:

Theorem 3.2.4.
If the inequality

πT x ≤ π0(3.5)

defines a facet of P and π0 
= 0 then π0 > 0 and 0 ≤ πp ≤ π0 for all p ∈ G.
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Now one wonders, if there are nontrivial valid inequalities for PG,D,b of
type (3.5), which are valid independently of b. This is answered to the
negative:

Theorem 3.2.5.
If the nonhomogeneous inequality (3.5) defines a facet of the 0-reduced
problem PG,D,b then this inequality either is not valid for all PG,D,b′ where
b′ varies or (3.5) is a positive multiple of xp ≤ 1 for a proper p ∈ G.

(Of course the main reason for this theorem to be true is that almost ev-
ery zero-one-vector is contained in one of these polyhedra; hence only facets
of the cube can be face-defining inequalities of all tomography polytopes
for given G and D.)

Proof. Let yp = 1 iff πp > 0 and let b′ denote the measurements along
D of y. If y fulfills (3.5) then

�
p πp ≤ π0. As (3.5) defines a facet of PG,D,b

there exists a vector x ∈ PG,D,b with πT x = π0 implying
�

p πp ≥ π0.

Hence we can conclude
�

p πp = π0. This finally shows that (3.5) is a
positive linear combination of the inequalities xp ≤ 1 for all p ∈ G. Since
it defines a facet it can be only a positive multiple of a single inequality
xp ≤ 1.

Since PG,D,b ⊆ PG,D,b′ for b ≤ b′ we obtain the following.

Theorem 3.2.6.
All valid inequalities of PG,D,b′ are valid for PG,D,b for b ≤ b′.

By contrast Theorem 3.2.5 shows that the converse is wrong. For p ∈ G
let Dp denote the set of all lines in D containing p. Another easy theorem
follows.

Theorem 3.2.7.
For each p ∈ G, the inequality

xp ≤ 1

is valid for PG,D,b; it defines a facet of PG,D,b if and only if bT ≥ 2 for all
T ∈ Dp.

Proof. Suppose that xp ≤ 1 defines a facet F. Then for every q ∈ G \ p
there exists a vector with xq = xp = 1 in F (otherwise F is contained in
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the affine subspaces xp = 1 and xq = 0). This shows that for all T ∈ Dp,q,
the set of lines containing p and q, holds bT ≥ 2.
Conversely, suppose that bT ≥ 2 for all T ∈ Dp holds. Now for every

q ∈ G \ {p} there is a vector that has 1’s at positions p and q only and
belongs to the face. Additionally the vector with a single 1 at position p
is contained in the face. As these vectors are affine independent they span
a facet of P.

Theorem 3.2.8.
For a geometric problem with m directions and a line T ∈ D with |{S ∈
DT ∩Dp : bS = 1}| ≤ |T |− bT for all p ∈ G\T and DT = {S ∈ D : T ∩S 
=
∅}, the set of all lines intersecting T, the inequality

�

p∈T

xp ≤ bT

defines a facet of PG,D,b.

Proof. The independence system of a reduced problem is normal and
there is exactly one line that contains more than one element of T therefore
rank(T ) = bT . Furthermore, for each p ∈ G \ T there exists a set Up of
cardinality bT with Up ∪ {p} ∈ I since |T \ {S ∩T : S ∈ DT ∩Dp and bS =
1}| ≥ bT . Therefore rank(T ∪ {p}) ≥ rank(T ) + 1; the set T is closed.
Furthermore, the critical graph HT (I) is connected, since for all p, q there
exists a set U ⊂ T of size bT − 1 (because we assumed a reduced problem
bT < |T | ) with U ∪{p}, U ∪{q} ∈ I and rank(U ∪{p}) = rank(U ∪{q}) =
bT .With Proposition 3.2.2 it follows that the rank inequality

�
p∈T xp ≤ bT

induces a facet.

The first nontrivial class of facets is given by the 3-hole-inequalities.
They are instances of the well-known odd hole inequalities of independence
systems.

Theorem 3.2.9.
For a geometric problem and three given lines T1, T2, T3 ∈ D and with
subsets Ii ⊆ Ti, intersecting pairwise (in three different points q1, q2, q3,
where q1 = T1 ∩ T2, q2 = T2 ∩ T3, and q3 = T3 ∩ T1) with |Ii| = bTi + 1,
the inequality

�
p∈I1∪I2∪I3

xp ≤ bT1 + bT2 + bT3 − 2 defines a face of P. If
furthermore

Condition 1: |T∩(I1∪I2∪I3)| ≤ bT for all other lines T ∈ D\{T1, T2, T2}
and



3.2. The Tomography Polytope 51

Condition 2: for all points p ∈ G \ (T1 ∪ T2 ∪ T3) there is no line k 
=
T1, T2, T3 through p which intersects T1 ∪ T2 ∪ T3 in more than bk − 1
points

then the inequality defines a facet.

Proof. First we prove the validity by adding the inequalities
�

p∈Ii
xp

≤ bTi for i ∈ {1, 2, 3} and xp ≤ 1 for all p ∈ (I1 ∪ I2 ∪ I3) \ {q1, q2, q3}. The
sum is

2
�

p∈I1∪I2∪I3

xp ≤ bT1 + bT2 + bT3 + (bT1 + bT2 + bT3 − 3).

This sum can be divided by 2 and the resulting inequalities right hand side
of bT1 + bT2 + bT3 − 3

2
can be rounded down. Hence we obtain the valid

inequality
�

p∈I1∪I2∪I3
xp ≤ bT1 + bT2 + bT3 − 2.

Regarding the facetness we will first show, that I1 ∪ I2 ∪ I3 is closed
in G \ R where R are the points of all Ti outside all Ii namely R =
(T1∪T2∪T3)\ (I1∪I2∪I3); then we prove that HI1∪I2∪I3(I) is connected.
Finally we will lift the inequality from G \ R to G.
LetW = I1∪I2∪I3. The validity of the inequality shows that rank(W ) ≤

bT1 + bT2 + bT3 − 2. To prove that rank(W ) ≥ bT1 + bT2 + bT3 − 2 choose
a subset U of W by taking bTi − 1 elements from Ii \ {q1, q2, q3} (This
is possible, because |Ii \ {q1, q2, q3}| ≥ bTi − 1.) for i ∈ {1, 2, 3} and
q1 = T1 ∩T2. Obviously U ⊂ W and |U | = bT1 + bT2 + bT3 −2 and U fulfills
the constraints of T1, T2, T3. The remaining constraints are fulfilled as a
consequence of condition 1. To prove closedness of W in G \ R consider
an arbitrary point p ∈ (G \ R) \ W and observe that the set U ∪ {p}
is independent as a consequence of condition 2. Hence rank(U ∪ {p}) ≥
rank(U) + 1 and W is closed in G \ R
In HW (I) the points q1, q2, q3 are adjacent because U ∪ {qi} are rank-

maximal in W. Furthermore q1 is adjacent to all q ∈ T1\{q1, q2, q3} because
we can construct a new set U ′ as earlier with the additional property
that q ∈ U ′, q3 ∈ U ′ and q2 /∈ U ′. Now U ′ and (U ′ \ q) ∪ q1 are two
independent and rank-maximal sets. By interchanging the argument for
the other combinations of qi and Tj we can conclude that HG\R(I) is
connected. Now we can invoke Proposition 3.2.2 to conclude that the
inequality defines a facet for the problem restricted to G \ R.
Therefore we know that |G \ R| vectors with |G \ R| entries exist which

give a nonsingular |G \ R| × |G \ R| matrix Q. To finish the proof we will
construct feasible incidence vectors x with

�
i∈R xi = 1 each of which
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fulfills xi = 1 for a different i ∈ R to augment Q to a fullrank |G| × |G|
matrix. Notice that for each p ∈ R the set U ∪{p} is feasible and contained
in the face. So we can augment Q to the following matrix

Q′ =

�
Q 0
U I

�

where 0 is a |G \R| × |R| matrix of zeroes, I is a |R| × |R| identity matrix,
and (U, I) are the new incidence vectors written rowwise. Obviously Q′

has full rank, therefore we have shown that the vectors span a facet.

The complicated conditions for a 3-hole inequality to define a facet are
in the applications usually met as the next (easy to prove) corollary shows.

Corollary 3.2.10.
For a planar geometric problem the condition bT ≥ 4 for all T ∈ D implies
that conditions 1 and 2 hold. In this case all 3-hole inequalities are facet
defining.

These assumptions might appear to be too strong. But in the usual
applications many atoms are placed in the picture, so bT has size of order
bT /2 for most l. So bT ≥ 4 is not a severe restriction for nonzero-lines. Lines
with bT = 0 are cast out by 0-reducing the problem. So we can assume that
there are only few constraints with 1 ≤ bT < 3. Each of these few reduces
the dimension of the face only a little. So the faces stay highdimensional.

Theorem 3.2.11.
Separation of the 3-hole-inequalities is possible in polynomial time.

Proof. Suppose a fractional solution x∗ is given. Notice that we can
consider all different triples of lines T1, T2, T3 intersecting in three different
points q1, q2, q3 in polynomial time. Given three lines and a fractional
solution x∗ a necessary condition for the 3-hole-inequality to be separating
is 1 < x∗

q1 + x∗
q2 + x∗

q3 < 2. This can be verified fast. Choose the sets
I1, I2, I3 according to the following rule; let Ii contain qi, qi−1 and the
bTi − 2 largest (with respect to the value of x∗

p) positions p ∈ Ti of x∗.
By this mean the 3-hole-inequality with the largest left-hand-side for fixed
T1, T2, T3, q1, q2, q3 is constructed.

Notice that the 3-hole-inequalities belong to the class of {0, 1
2
}-Chvátal-

Gomory cuts [CF96]. They are already {0, 1
2
}-cuts of the LU-relaxation (see
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(1, 3)

(1, 2) (2, 2)

(2, 1) (3, 1)

(3, 2)

Figure 3.1. Counterexample.

[CF96]) of Ax ≤ b and for this larger class of cuts a polynomial separation-
algorithm is known. So we gave for some members of the family of {0, 1

2
}-

cuts of the LU-relaxation sufficient conditions to be facet-defining.
Another question is whether all faces are commonly shared among all 0-

reduced polytopesQG,D,b,z for varying z.Again this question is answered to
the negative. For a counterexample (see Figure 3.1) consider the following
sets G and D. Let G = {(1, 2), (1, 3), (2, 1), (2, 2), (3, 1), (3, 2)} and D is de-
termined by the directions {(1, 0), (1, 1), (0, 1)}. Compute the measurement
b from the configuration with atoms at positions {(1, 2), (1, 3), (2, 1), (2, 2),
(3, 1)} and consider QG,D,b,5. For this measurement the problem is 0-
reduced and the inequality x13 + x12 + x22 + x32 ≤ 3 defines a face. In
contrast for the problem QG,D,b′,5 coming from a measurement with atoms
at {(1, 2), (1, 3), (2, 2), (3, 1), (3, 2)} the inequality x13+x12+x22+x32 ≤ 3
is invalid. So the inequality x13 + x12 + x22 + x32 ≤ 3 defines a face of
QG,D,b,5 but is invalid for QG,D,b′,5.
Another big class of facets is constituted by the chain of triangle in-

equalities. An example is drawn in Figure 3.2. A chain Tk of k triangles
has ground set G = {1, 2, . . . , 2k + 1} and it has the set of lines

D = {{1, 2, . . . , k + 1}} ∪
k�

i=1

{{i, i+ k + 1}} ∪
k+1�

i=2

{{i, i+ k}};

the measurements along all lines of cardinality 2 are 1 and the measurement
along the long line is k.
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2k

≤ k

2k + 1

k

k + 3k + 2

k + 1

≤ 1≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1 ≤ 1≤ 1

21 3

Figure 3.2. Example for chain of triangles inequality.

Theorem 3.2.12.
The chain of k triangles Tk has rank k and its rank inequality defines a
facet.

Proof. Notice that rank(Tk) = k because for each set U ⊆ Tk holds
either |U∩Nk+1| = k or < k. In the first case, U∩(N2k+1\Nk+1) = ∅, in the
second case U ∩Nk+1 blocks |U ∩Nk+1| of its neighbors in (N2k+1 \Nk+1),
hence only 2k+1−(k+1)−|T ∩Nk+1| of the upper vertices can be chosen.
To prove that it defines a facet notice that all sets with k elements of

Nk+1 are rank-maximal and the sets Ui = {k+1+ i}∪Nk+1 \ {i, i+1} for
i = 1, . . . , k are rank-maximal too. So HN2k+1(I) is connected. Trivially it
is closed, so invoking Proposition 3.2.2 finishes the proof of facetness.

3.3. The Uniqueness Problem

For the uniqueness problem the following easy to prove theorem provides
an ILP formulation.

Theorem 3.3.1.
Consider an optimal and integral solution x̄ to 1T x such that Ax ≤ b.
This solution is unique if the optimum value of 1T x such that Ax ≤ b,�

p∈G x̄pxp ≤
�

p∈G xp − 1 and x integral, is strictly smaller than the
previous optimum.

For computational results for the uniqueness problem see Chapter 7.
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3.4. The Weak Invariance Problem

Theorem 3.4.1.
Weak-Combinatorial-Invariance is solvable in polynomial time. Given
an interior point solution of Q= all integral components are invariant.

Proof. Interior point methods can solve max
�

xp s.t. Ax = b, 0 ≤
x ≤ 1 in polynomial time. Fishburn, Schwander, Shepp, and Vander-
bei [FSSV97] pointed already out that for an interior point solution x∗ the
sets U0 = {p ∈ G : x∗

p = 0} and U1 = {p ∈ G : x∗
p = 1} solve LP-invariance.

(For a proof notice that an interior-point solution of the problem is in
the relative interior of the optimal face (Q=). Now use Caratheodory’s
theorem.)

The algorithm of this theorem improves a result of Aharoni, Herman,
and Kuba [AHK97]. They gave a criterion to decide for a given solution
(but to obtain this solution might be ��-hard already) and a position in it,
whether this position is LP-invariant. So to find all LP-invariant positions
requires the solution of as many linear programs as there are positions in
the instance. By contrast, our method does not need to know a solution
and it suffices to solve a single linear program.

3.5. A Solver for Reconstruction

To asses the utility of the polyhedral approach we implemented in
C++ a program that solves Geometrical-Reconstruction(U). It is
based on our class-library1 for problems of discrete tomography and on
CPLEX 6.5 [ILO97].
For three directions (1, 0), (1, 1), (0, 1) and instances of 50% density our

program solves quite easily problems of size 70× 70 within 7 minutes. For
a more complete overview of the running-times see Figure 3.1.

3.6. Greedy Solutions and Greedy Cuts

In the environment of a branch-and-cut-algorithm two ingredients are
necessary besides having an LP-problem and an LP-solver:

1. methods to construct a valid inequality from a fractional solution
(separation) and

2. methods to construct from a given (possibly suboptimal) solution a
better one (augmentation).

1designed by the author and coded by Jens Zimmermann
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Size of Instances Average Time (in seconds)

50× 50 64
60× 60 141
70× 70 406
80× 80 1157
90× 90 2551
100× 100 4354

Table 3.1. Running-times of the reconstruction algo-
rithm for problems of different sizes (average for 30 in-
stances).

From [GLS93] we know that for a ��-hard optimization problem the sep-
aration-problem is ��-hard and it is shown by Schulz, Weissmantel, and
Ziegler [SWZ95] that the augmentation-problem is ��-hard. In this light
we cannot hope for a polynomial algorithm for separation or augmentation.
Theorem 3.2.11 provides a (very) partial answer, in that it provides an

algorithm which (sometimes) finds a violated-constraint.
But still we need something to do about this in practical situations.

Usually we can assume that z is larger than 1
2
|G| = 1

2
n and that |D| =

O(
√

n). This can be exploited to get a good approximate solution.

Theorem 3.6.1.
For a tomography problem with |D| = O(

√
n) it is possible to obtain in

polynomial time a feasible solution of value z − O(
√

n).

Proof. With interior point algorithms one can get in polynomial time a
primal-dual feasible solution x∗. By choosing a random direction within the
optimal face, we can guarantee that x∗ is a basic optimal solution x∗. (The
same can be done deterministically.) In the feasible solution x∗ at least n
constraints (but usually a lot more, because Q is strongly degenerate) are
active. Obviously at most |D| constraints of Ax ≤ b are active, so at least
n − |D| constraints of type xp ≤ 1 or xp ≥ 0 are active. So there are at
most |D| fractional positions (that is, |{p ∈ G : 0 < xp < 1}| ≤ |D|). If we
construct x̂ as x̂p = 1 iff x∗

p = 1 and otherwise x̂p = 0 we round at most |D|
fractional variables to zero. So the error is smaller than |D| = O(

√
n).
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Next we propose a method (see Figure 3.3) which solves either the
separation-problem or the augmentation-problem (actually more than the
augmentation-problem: the optimization-problem) at the same time. Call
this method solve-or-cut. This method tries at every fractional node of
the branch-and-cut-tree first to fix all integral variables and then to solve
the residual problem integrally. If it succeeds we found a solution to the
original problem; but if the residual optimization fails this implies that it
is impossible to complete the fixed part to a fully integral solution. So in
the second case we know that at least one of the 1’s in the original solution
is wrong. This can be expressed as a valid inequality that is violated by
the original solution.

procedure solve-or-cut
(1) compute a feasible integral solution x from a given fractional

solution x∗ by use of the rounding-theorem 3.6.1.
(2) compute the measurements for a new subproblem I′,

where all integral components of x∗ are fixed.
(3) compute an optimal integral solution y of I′ (under Cy ≤ d).
(4) if

�
p xp +

�
p yp = z then stop (found an optimal solution);

(5) else Let πp = 1 for x∗
p = 1, πp = 0 for x∗

p = 0
and bπ =

�
x∗

p − 1.
stop (πT z ≤ bπ is a separating hyperplane).

end solve-or-cut
Figure 3.3. An algorithm to solve the solve-or-cut problem.

At first it does not seem too convincing to try to solve the optimization-
problem for I (perhaps with additional cuts Cx ≤ d) with a branch-and-
cut-algorithm which solves in each node a solve-or-cut problem. But in the
practically important case of z = O(n) and |D|+#cuts = O(

√
n) (the first

is fulfilled for ‘dense’ problems; the second for geometric problems where
only few cuts are added) the subproblems, which have to be solved in step
2) in each node, have only O(

√
n) variables. So for our ��-hard problems

the subproblems are very easy.
The next question to address is why the returned cut is valid. Notice

that if for x where all components in W = {p ∈ G : x∗
p ∈ {0, 1}} are fixed

there exists no y to extend x to an optimal solution, then every optimal
solution xopt differs from x in at least one component ofW. Therefore holds�

πpzp 
= bπ. But it is trivial to see that πT z ≤ bπ always holds. So we can
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conclude that for all optimal solutions holds πT z ≤ bπ − 1. This implies
that πT z ≤ bπ −1 is a valid cut for P= but is invalid for P (as it cuts some
suboptimal vertices off).

3.7. On the Dimensional Gap between the ILP and LP

In this section we are interested only in geometrical tomography prob-
lems. Theoretically, it is of course clear, that even the dimensions of P=

and Q= cannot always be the same, because otherwise, the uniqueness
search problem would be solvable in polynomial time. But nevertheless,
one is interested of course in concrete examples that illustrate this point.
The first example of this type was given by Vlach [Vla86, Problem

12] who showed for a certain instance of a 3-dimensional reconstruction
problem along the coordinate-axes on a 3 × 4 × 6 cube, that P= = ∅ but
|Q=| = 1 (that is dimP= = −1 < dimQ= = 0).
At the Workshop “Discrete Tomography: Algorithms and Complexity”

in Dagstuhl, January 20th–24th, 1997, A. Kuba posed a similar problem,
that can be reduced to the task to construct an example for dimP= = 0 <
dimQ= = 1. Initially, we managed to show that there is no such example
contained in the 3× 3× 3 cube. Next, Gritzmann and Wiegelmann [GW]
found an example for Kuba’s challenge, by presenting a configuration in
the 3 × 7 × 7 box with dimP= = 0 < dimQ= = 1. But it remains still
open, whether this example is minimal (in the sense that there exists no
example that could be embedded into a smaller box). Given, that this
example more than doubles the size of Vlach’s, one really wonders why
there should not be a smaller example.
So we took up the task to establish new lower bounds for the size of ex-

amples for dimP= = 0 < dimQ= = 1. Utilizing the particular symmetries
of the problem we managed to check all configurations in a 3× 3× 4 cube
to show that no example can possibly be contained in this cube; the com-
putation needed 79 hours and 3 minutes of CPU-time on an SGI Origin200
with 4 CPUs at 225MHz. Similarly, we established that the 3× 2× 6 cube
contains no example; this computation took 362 hours and 3 minutes.
Given the high computational cost (time-wise) we did not pursue larger

examples. But it seems feasible, by utilizing the new knowledge about
smaller configuration, to sieve out more not interesting instances. By using
this iterated sieve, one should be able to improve the lower bound at least
in one dimension; so it might be feasible, to decide whether there is any
example already of the size of Vlach’s example.



CHAPTER 4

Approximating Generalized Cardinality
Set Packing and Covering Problems

4.1. Introduction

The present chapter studies various algorithms for solving approxima-
tively generalized cardinality set packing and set covering problems. By
a generalized packing and covering problem we mean problems, where the
required capacities are not only 1’s but arbitrary positive integers. The
bounds known from Hurkens and Schrijver [HS89] and Halldórsson [Hal96]
are generalized to this broader class of problems. It is very surprising that
the bounds proved later on match those already known for the more re-
stricted problems. These problems are important building blocks for other
problems. For example, a specialized version was used in [GVW] to approx-
imate binary images from discrete X-rays; this application is explained in
Section 4.6, where evidence of superior computational performance of our
algorithms in practice is given too.
We want to point out to the reader that the notion of generalized pack-

ing and covering is sometimes used for a different problem, where coeffi-
cients of −1 are permitted, see for example [CC95]. But for problems with
coefficients of −1 (to our knowledge) nothing is known in general about
approximability. Instead, in [CC95] conditions are studied which guar-
antee integrality of the corresponding polytope (and thereby polynomial
solvability of the problem).
This chapter is organized as follows:
Section 4.2 provides the basic notation, states the problems and algo-

rithmic paradigms that are most important in the context of the present
chapter, and gives a brief overview of our main results.
Section 4.3 studies various polynomial-time iterative improvement strat-

egies for approximating both problems. We derive performance ratios that
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show that in this model the optimum can be approximated up to a relative
error that depends only on the maximal column degree of the instance.
The analysis is based on results of [HS89] and [Hal96] for set packing and
set covering heuristics.
Section 4.4 shows that for a certain class of “high rank” instances a

polynomial time approximation scheme is available. This result should,
however, be regarded as a purely theoretical result. While the class of
instances it applies to contains the typical real-world instances of discrete
tomography the running time of the algorithm is impractical.
In Section 4.5 the results of Section 4.3 are applied to the problem of

finding a stable set of maximum cardinality in graphs that have a common
prescribed upper bound for the maximum degree of their vertices.
In Section 4.6 finally we apply the techniques of this chapter to obtain

approximate reconstructions for problems of discrete tomography. Addi-
tionally, we report on the superior computational performance of these
algorithms.
The results of this chapter generalize joint work [GVW] with Peter Gritz-

mann and Markus Wiegelmann. Furthermore we thank Jens Zimmermann
for helping with coding the data-structures and algorithms.

4.2. Preliminaries and Overview

4.2.1. Two Optimization Problems. The set packing problem is the
problem to choose from a collection of sets as many disjoint sets as possible.
Writing the incidence vectors of the different sets as columns of a matrix
A, the problem can be equivalently stated as

max1T x s.t.

Ax ≤ 1, and x ∈ {0, 1}N ,
(4.1)

where 1 is the all-ones vector. Similarly the set covering problem requires
to choose from a given collection of sets as few as possible which cover all
elements in the union of the sets. This problem can be stated as

min1T x s.t.

Ax ≥ 1, and x ∈ {0, 1}N .
(4.2)

But there is a different (transposed) way to look at these problems, by
reading the rows of the matrix A as incidence vectors of query sets. So an
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equivalent rewording of the problem (4.1) is to ask for a maximal collection
of items (corresponding to columns) so that from each of the given query
sets at most one element is chosen. Accordingly, problem (4.2) is to find a
minimal set of elements, so that from each of the query sets at least one
element is chosen.
Using this query set formulation, it is simple to describe the generalized

set packing and set covering problems central to this chapter. Given a
collection T of (different) subsets of a finite ground set G and a function
of capacities φ : T 
−→ �0 the generalized set packing problem is defined
as follows.

Generalized-Set-Packing.

Instance: A ground set G, a collection of querysets T ⊆ 2G,
and a function of capacities φ : T 
−→ �0 .

Output: A set F ⊆ G of maximal cardinality such that
|F ∩ T | ≤ φ(T ) for all T ∈ T .

Equivalently, if the incidence vectors of different T ∈ T are the rows of
A and b contains the corresponding φ’s then Generalized-Set-Packing
can be formulated as the integer linear program

max1T x s.t.

Ax ≤ b, and x ∈ {0, 1}G.
(4.3)

So the generalized set packing problem is to choose a set V ⊆ G of maximal
cardinality such that from each query set T ∈ T at most φ(T ) elements are
selected. Similarly, the generalized set covering problem can be defined.

Generalized-Set-Covering.

Instance: A ground set G, a collection of query sets T ⊆ 2G,
and a function of capacities φ : T 
−→ �0 .

Output: A set F ⊆ G of minimal cardinality such that
|F ∩ T | ≥ φ(T ) for all T ∈ T .

Equivalently, if the incidence vectors of different T ∈ T are the rows of A
and b contains the corresponding φ’s then Generalized-Set-Covering
can be formulated as the integer linear program

max1T x s.t.

Ax ≥ b, and x ∈ {0, 1}G.
(4.4)
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So the generalized set covering problem is to choose a set V ⊆ G of minimal
cardinality such that from each query set T ∈ T at least φ(T ) elements are
selected.
These two problems are complementary to each other in the following

sense. The complement F̄ = G \ F of a solution F ⊂ G of an instance of
one problem is a solution of the instance with complementary candidate
function φ̄ defined by φ̄(T ) = |G ∩ T | − φ(T ) of the other problem. This
reflects the fact that there are two different ways to describe a solution:
either by listing its elements or by listing its non-elements. However, as
the direct conversion of an approximation result for Generalized-Set-
Packing of the form |V |/|F | ≥ α (F is an optimal solution and V is
some solution) yields a bound |V̄ |/|F̄ | ≤ α + (1 − α)|G|/|F̄ | for Gen-
eralized-Set-Covering that is dependent on the “density” |F |/|G| of
an optimal solution in the ground set, bounds for the relative error of
one problem are usually not “identical” to bounds for the other. More
importantly, our algorithms for Generalized-Set-Covering are actually
insertion methods rather than ‘dual’ deletion methods. Hence we will
consider Generalized-Set-Packing and Generalized-Set-Covering
separately in Section 4.3.
The problemsGeneralized-Set-Packing andGeneralized-Set-Cov-

ering are already ��-hard (see [GJ79, Problems SP3, SP5]) in the re-
stricted case that b is only an all 1’s vector. So in general there is no
hope to obtain the optimal solution in polynomial time. Hence for large
instances it is desirable to obtain at least provably good (if not optimal)
solutions in polynomial time. The bounds presented in this study depend
on the column degree of the matrix A, but they do not depend on b. The
column degree m of a matrix A is defined by

m = max
j is a column of A

�

i is a row of A

Aij

or equivalently m = maxv∈G |{T ∈ T : T � v}|. All approximation guar-
antees proved in this chapter will depend on the column degree of the
underlying incidence structure.
The problemsGeneralized-Set-Packing andGeneralized-Set-Cov-

ering are polynomially solvable if m = 1; in fact a simple, greedy-type
algorithm solves them. For m = 2, the problems Generalized-Set-
Packing and Generalized-Set-Covering are solvable in polynomial
time, if T permits a partition T = T1∪̇T2 so that the sets in T1 are disjoint
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and the sets in T2 are disjoint; in this case the polynomial time solvabil-
ity follows from the observation that the underlying matrix A is totally
unimodular.

4.2.2. Two Basic Algorithmic Paradigms. In this section we in-
troduce two general algorithmic schemes for solving Generalized-Set-
Packing and Generalized-Set-Covering that provide the framework
for the subsequent approximation algorithms studied in Section 4.3.
Essentially, we distinguish two kinds of approximation algorithms here,

iterative improvement strategies and LP-based methods via rounding. The
former are built on some greedy method that is refined by improvement
and matching techniques, while the latter try to exploit the information
gained from solving LP-relaxations of the integer linear programs. The em-
phasis of the present chapter will be on the theoretical analysis of iterative
improvement strategies.
In the simplest classes of local search algorithms for Generalized-Set-

Packing and Generalized-Set-Covering the neighborhood of a set S
is defined as the collection of all supersets of S of cardinality |S|+ 1, or of
all subsets of cardinality |S| − 1, respectively, and the choice is based on
some greedy strategy (that may or may not use weights for breaking ties).
In order to increase the performance of such iterative insertion or deletion

algorithms, one can apply r-improvements for r ∈ �0 where an r-element
〈(r+ 1)-element〉 subset of a current feasible solution F ⊂ G for the given
instance of Generalized-Set-Packing 〈Generalized-Set-Covering〉
is deleted and r+1 〈r〉 elements of (G \F ) are inserted while maintaining
feasibility. A feasible set F ⊂ G is called t-optimal for the given instance
of Generalized-Set-Packing 〈Generalized-Set-Covering〉 if no r-
improvement is possible for any r ≤ t. Note that 0-optimality agrees
with the common greedy-optimality (no element can be inserted without
destroying feasibility for Generalized-Set-Packing and no element can
be removed without destroying feasibility for Generalized-Set-Cover-
ing).
The following paradigm comprises a large class of iterative improvement

methods for Generalized-Set-Packing. A similar paradigm can be for-
mulated for Generalized-Set-Covering.

Paradigm 4.2.1 (Iterative feasible approximation).
• INPUT: Capacity function φ for the given collection T of query sets.



64 Approximating Generalized Cardinality Set Packing and Covering Problems

• OUTPUT: A feasible set F ⊂ G for the given instance of General-
ized-Set-Packing.

• COMPUTATION:
Start with F = ∅ and successively apply r-improvements for
r ≤ t, for some fixed constant t ∈ �0 until no further improve-
ment is possible.

As it is not specified how to select the elements for insertion and deletion,
Paradigm 4.2.1 is so general and flexible that it covers a large number
of algorithms that incorporate promising refinements. For example, the
values of the query set (or residual capacities) could be used to express
preferences between elements to be chosen.
Another approach for solving Generalized-Set-Packing and Gene-

ralized-Set-Covering is based on the linear programming relaxation
of (4.3) or (4.4). As a rather general paradigm it can be described as
follows.

Paradigm 4.2.2 (LP-based approximation).
• INPUT: Capacity function φ for the given collection T of query sets.
• OUTPUT: A feasible set F ⊂ G for the given instance of General-
ized-Set-Packing 〈Generalized-Set-Covering〉.

• COMPUTATION:
Compute a solution x0 of the LP-relaxation of (4.3) 〈(4.4)〉.
Apply rounding techniques to x0 to obtain an integer feasible
solution.

Section 4.4 will show that for certain “dense” classes of instances of Gen-
eralized-Set-Packing and Generalized-Set-Covering, LP-based ap-
proximation leads to a polynomial-time approximation scheme.

4.2.3. Main Results. For Generalized-Set-Packing the simplest
algorithm within the framework of Paradigm 4.2.1 is the plain greedy
algorithm which considers the elements of the ground set in an arbitrary
order and successively chooses elements. It is already known by [KH78]
that for a greedy-optimal solution V holds

|V |
|F | ≥

1

m
.

It is natural to try to improve this algorithm by using 1-improvements,
2-improvements, etc. In this case, Theorem 4.3.1 shows that for a t-optimal
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solution V ,

|V |
|F | ≥

2

m
− εm(t),

where εm(t) is given explicitly and approaches 0 exponentially fast.
Theorem 4.3.4 provides worst case guarantees for Generalized-Set-

Covering. Part (a) shows that a simple greedy-type-insertion-algorithm
yields a solution U such that

|U |/|F | ≤ H(m),

where H(m) = 1 + 1/2 + · · · + 1/m is the m-th harmonic number. If
additional matching techniques are applied to obtain a stronger optimality
condition (“matching-optimality”), then

|U |/|F | ≤ H(m)− 1/6,
Theorem 4.3.4(b).
Theorem 4.3.5 (a) shows that the t-optimality of a solution U guarantees

that

|U |/|F | ≤ m/2 + εm(t),

where again εm(t) is given explicitly and tends to 0 exponentially fast. If,
finally, the solution is matching-optimal and (what will be defined later)
effect-3-t-optimal for t ≥ 5 then

|U |/|F | ≤ H(m)− 1/3,

Theorem 4.3.5 (c). That is, for m = 3, 4, 5 the bounds are 3
2
, 7

4
, and 39

20
.

4.3. Performance Guarantees for Iterative Algorithms

4.3.1. Effects. Let V ⊂ G and g ∈ G \ V . The effect eV (g) of g with
respect to V is the number of query sets S ∈ T containing g for which the
capacity φ(S) is not yet achieved by V , i.e.,

eV (g) = |{S ∈ T : S � g and |S ∩ V | < φi(S)}|.

Clearly, the effect of an element is an integer between 0 and and the column
degree m. This notion can easily be extended to subsets of G \ V . More
precisely, let V ′ ⊂ G \ V , then the effect eV (V

′) of V ′ with respect to V is
defined by

eV (V
′) =
�

T∈T
eV,V ′(T ),
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where

eV,V ′(T ) =

�����
����
|V ′ ∩ T | if |(V ∪ V ′) ∩ T | ≤ φ(T );

φ(T )− |V ∩ T | if |V ∩ T | < φ(T ) and

|(V ∪ V ′) ∩ T | ≥ φ(T );

0 if |V ∩ T | ≥ φ(T ).

Clearly, eV (g) = eV ({g}); also eV (V
′) lends itself to a successive evalua-

tion. In fact, if V ′ = {g1, . . . , gl},

eV (V
′) =

l�
i=1

eV ∪{g1,...,gi−1}(gi).

Furthermore,

e =
m�

i=1

�
T∈Ti

φi(T )

is called the total effect of the given instance. Clearly, if L and U are feasible
for the given instance of Generalized-Set-Packing and Generalized-
Set-Covering, respectively, then m|L| ≤ e ≤ m|U |. In particular, if F is
a common solution for the same instance of Generalized-Set-Packing
and Generalized-Set-Covering, then e = m|F |.

4.3.2. Algorithms for Generalized-Set-Packing. The following re-
sult gives worst case performance guarantees for a wide class of approx-
imation algorithms for Generalized-Set-Packing that fit into Para-
digm 4.2.1.

Theorem 4.3.1.
Let t ∈ �0 , let V be t-optimal for a given instance of Generalized-Set-
Packing and let F be an optimal solution for that instance. Then

|V |
|F | ≥

2

m
− εm(t),

where

εm(t) =

�
m−2

m((m−1)s+1−1)
if t = 2s;

2(m−2)
m(m(m−1)s−2)

if t = 2s − 1.

Observe that εm(t) → 0 as t → ∞. To give an impression of how t
enters the bound on the right hand side of Theorem 4.3.1 note that for
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t = 0, . . . , 5, the values of 2/m − εm(t) are
1
3
, 1

2
, 5

9
, 3

5
, 13

21
, 7

11
when m = 3

and 1
4
, 2

5
, 7

16
, 8

17
, 25

52
, 26

53
when m = 4.

For the proof of the case t > 0 of Theorem 4.3.1 we need the following
combinatorial result of Hurkens and Schrijver [HS89, Theorem 1].

Proposition 4.3.2 (Hurkens and Schrijver).
Let p, q ∈ �, let V be a set of size q and let E1, . . . , Ep be subsets of V .
Furthermore, let m, t ∈ � with m ≥ 3 such that the following holds:

(i) Each element of V is contained in at most m of the sets E1, . . . , Ep.
(ii) For any r ≤ t, any r of the sets among E1, . . . , Ep cover at least r

elements of V .

Then

p

q
≤
�

m(m−1)s−m
2(m−1)s−m

if t = 2s − 1;
m(m−1)s−2
2(m−1)s−2

if t = 2s.

It is convenient to regard V and E = {E1, . . . , Ep} as a hypergraph
(V, E). Clearly, under the hypothesis of (i) and (ii) there is some bound on
the quotient p/q. The bounds given in Proposition 4.3.2, however, are not
that obvious and proved by a quite involved induction. (In addition, [HS89]
shows that these bounds are tight.)
Let us point out that in [HS89] Proposition 4.3.2 is used to derive bounds

for the approximation error of certain set packing heuristics while in [Hal96]
it is utilized for set covering. Our subsequent analysis is based on the ideas
of these papers.

Proof of Theorem 4.3.1. For a direct proof of the case t = 0, note
that the effect of V has to be at least |F | because otherwise the effect of
F \V with respect to V would be greater than (m−1)|F |. In this case some
element of F would have effect m and could hence be added to V without
violating the constraints of Generalized-Set-Packing, in contradiction
to the assumption. As the effect of V is exactly m|V |, the result follows.
Turning now to the general result note first that it suffices to give a

proof under the additional assumption that V ∩ F = ∅. Then, the general
case follows via a reduction of the candidate functions for every query set
T ∈ T by |V ∩ F ∩ T | with the aid of the inequality

|V |
|F | ≥

|V | − |V ∩ F |
|F | − |V ∩ F | for |V | < |F |.
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We define a hypergraph H = (V, E) on the vertex set V with exactly |F |
hyperedges (one for each element of F ) that satisfies the conditions (i) and
(ii) of Proposition 4.3.2. Let F = {f1, . . . , fp} and V = {v1, . . . , vq}. The
family E of hyperedges is defined by associating for each k = 1, . . . , p with
fk ∈ F a set Ek ⊂ V which encodes the conflicts the insertion of fk would
cause with respect to {f1, . . . , fk−1}, F , and V .
For each query set T ∈ T define a map ιT : F ∩ T 
→ (F ∪ V ) ∩ T. Let

F ∩ T = {fi1 , fi2 , . . . , fia}, and V ∩ T = {vj1 , vj2 , . . . , vjb}.
If |F ∩ T | ≤ |V ∩ T | we set ιT (fil ) = vjl . If |F ∩ T | > |V ∩ T | let

ιT (fil ) =

�
vjl : for l ≤ |V ∩ T |, and
fil : otherwise.

Now we define the improvement set Ef for a given f ∈ F by

Ef = {ιT (f) : T � f} ∩ V.

We show that the assumptions of Proposition 4.3.2 are satisfied for
t′ = t + 1. To verify (i) recall that an element v ∈ V belongs to Ef if
and only if there is a query set Tv with ιTv (f) = v. This can happen only
once for each query set containing v, hence v is contained in at most m
different sets Ef .
Next, we show that H has Property (ii) of Proposition 4.3.2. Assume

on the contrary, that there are sets Ek1 , . . . , Ekr+1 that cover at most r
elements of V for some r ≤ t. By choosing r to be minimal with this
property, we can assume that Ek1 , . . . , Ekr+1 cover exactly r elements of
V .
Let us consider the set

S =
�
V \ (Ek1 ∪ · · · ∪ Ekr+1)

�
∪ {fk1 , . . . , fkr+1}.

We show that the set S is feasible for the given instance of Generalized-
Set-Packing. Let T ∈ T . If |F ∩ T | ≤ |V ∩ T | we have

|S ∩ T | ≤ |V ∩ T | ≤ φ(T ).

On the other hand, |F ∩ T | > |V ∩ T | yields
|S ∩ T | ≤ |F ∩ T | ≤ φ(T ).

This shows that S is indeed feasible for the given instance of General-
ized-Set-Packing.
Because S is obtained from V by deleting the r elements of Ek1 ∪ · · · ∪

Ekr+1 and inserting the r + 1 elements {fk1 , . . . , fkr+1}, S facilitates an
r-improvement, a contradiction to the assumption of t-optimality of V.
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Summarizing, we have seen that (i) and (ii) of Proposition 4.3.2 hold
for H and t′ = t+ 1, and we obtain

p

q
=

|F |
|V | ≤

���
��

m(m−1)s−m
2(m−1)s−m

: t+ 1 = 2s − 1

m(m−1)s−2
2(m−1)s−2

: t+ 1 = 2s

Hence
|V |
|F | =

2

m
−
�
2

m
− |V |

|F |

�
≥ 2

m
− εm(t)

which yields the assertion.

Deterministic polynomial time algorithms that meet the requirements
of Theorem 4.3.1 include the greedy algorithm (for t = 0) or any other
algorithm according to Paradigm 4.2.1.

4.3.3. Greedy Type Insertion for Covering. By changing the stop-
ping rule in Paradigm 4.2.1, an algorithm for solving Generalized-Set-
Packing can be extended to an algorithm for solving Generalized-Set-
Covering. Instead of inserting elements into a set U ⊂ G only as long as
all constraints of Generalized-Set-Packing are satisfied, such an algo-
rithm inserts elements until the constraints of Generalized-Set-Cover-
ing are satisfied for the first time. As one would never insert an element
into the set U that has effect 0, any such heuristic approximates General-
ized-Set-Covering by a factor of at most m. This seems to be the dual
result to Theorem 4.3.1 for the case t = 0 but it is not because the final
set U is not 0-optimal in general. In fact, in this section we will study an
insertion strategy for Generalized-Set-Covering that extends solutions
of Generalized-Set-Packing.

Algorithm 4.3.3 (Greedy strategy for Generalized-Set-Covering).

• INPUT: Capacity functions φ for the given collection T of query sets.
• OUTPUT: A set U ⊂ G feasible for the given instance of General-
ized-Set-Covering.

• COMPUTATION:
1. Initialize U = ∅ and l = m.
2. Repeat the following step until l = 0:

2.1. Add elements of effect l to U as long as such elements
exist.

2.2. Decrease l by 1.
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In the sequel it will often be necessary to regard the elements of U as
ordered. This underlying order will always be the element insertion order
produced by Algorithm 4.3.3.
The performance guarantees given in the next theorem are derived by a

careful analysis of the m iterations of Step 2.1 in Algorithm 4.3.3. Further
an additional slight refinement of the algorithm is analyzed. This refine-
ment consists of a combined treatment of elements of effect one and two by
means of matching techniques. More precisely, for l = 1, . . . , m let Ul ⊂ U
be the set of elements constructed for the parameter l in Step 2.1. Then,
in the modified version, Um, . . . , U1 are first constructed by Step 2 of Al-
gorithm 4.3.3, and subsequently, the following computation is appended as
Step 3 in order to decrease |U1 ∪ U2|.

3. Repeat the following procedure until no further improvements occur:
3.1. Define a graph (V, E) on the vertex set V = T of all query sets

as follows: For a vertex v ∈ Ti, 1 ≤ i ≤ m, define the degree

bv = max{0, φ(v)− |(U3 ∪ · · · ∪ Um) ∩ v|}.
The edges E are given by means of the set G′ = G \ (U3 ∪
· · · ∪ Um) in the following way: For g ∈ G′ let eg = {v ∈
V : g ∈ v and bv > 0}. (Note, that |eg | ≤ 2 because there
are no elements of effect at least 3 left in G′.) Now construct
a minimum b-edge-cover M for (V, E) and add U1,2 = {g ∈
G′ : eg ∈ M} to U .

Algorithm 4.3.3 can be implemented so as to have a polynomial running
time. Using e.g. the method outlined in Subsection 2.4.5 to solveMinimum-
b-Covering we see, that Step 3.1 can be carried out in polynomial time.
A feasible set U (together with an insertion order) which does not allow
any further improvements by means of the procedure in Step 3.1 is called
matching-optimal (with respect to that order). Note, that the iteration
of Step 3 terminates in one step, as after one call upon 3.1 no further
improvements are possible. This will be different after another refinement
of Algorithm 4.3.3 will be appended as Step 3.2 in Subsection 4.3.4.

Theorem 4.3.4.
Let U be a set of elements constructed by Algorithm 4.3.3 and let F be any
feasible solution for Generalized-Set-Covering.
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(a) Then

|U |
|F | ≤ 1 +

1

2
+ · · ·+ 1

m
= H(m) < 1 + log(m).

(b) If U is matching-optimal, e.g. constructed by Algorithm 4.3.3 extended
by Step 3, then

|U |
|F | ≤

5

6
+
1

2
+ · · ·+ 1

m
= H(m)− 1

6
<
5

6
+ log(m).

The bounds for |U |/|F | in Theorem 4.3.4 (a) are 11
6

, 25
12

, 137
60

for m =

3, 4, 5, respectively. In (b) they are 5
3
, 23

12
, 127

60
.

Proof of Theorem 4.3.4. (a) Let Ul be again the set of elements
inserted in Step 2.1 of Algorithm 4.3.3 for parameter l, i.e. the elements
which yield an effect of l upon insertion, and let ul be the cardinality of
Ul. The effect el of U1 ∪ · · · ∪ Ul with respect to Ul+1, . . . , Um is given by
el = u1 + 2u2 + · · ·+ lul. On the other hand, we show that el is bounded
from above by l|F | for some l.
To this end, let e be the total effect to be attained and suppose to the

contrary that el > l|F |. Consider the set F ′ = F \ (Ul+1 ∪ · · · ∪ Um). The
union of F ′ and Ul+1 ∪ · · · ∪Um contains F , which is feasible for the given
instance ofGeneralized-Set-Covering, and thus has effect e. Therefore,
the effect of F ′ with respect to Ul+1 ∪ · · · ∪Um is exactly el and hence, by
our assumption, greater than l|F |. As |F ′| ≤ |F | this implies by the pigeon
hole principle that there is at least one element g ∈ F ′ with effect at least
l+1. This, however, means that the algorithm would have chosen g rather
than some element in U1 ∪ · · · ∪ Ul because all these elements have effect
at most l with respect to Ul+1 ∪ · · · ∪ Um, a contradiction. Thus

el = u1 + 2u2 + · · ·+ lul ≤ l|F |,(4.5)

for l = 1, . . . , m. Denoting the inequality (4.5) for parameter l ∈ {1, . . . , m}
by Il we consider the positive linear combination

1

m
Im +

m−1�

l=1

1

l(l + 1)
Il(4.6)

of I1, . . . , Im. Collecting the terms on the left and on the right of (4.6) we
obtain

m�

i=1

ui ≤ |F |+
m−1�

l=1

1

l + 1
|F |,
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which is equivalent to the assertion in (a).
The proof of (b) uses the same arguments as that of (a) with the dif-

ference that appending Step 3.1 to Algorithm 4.3.3 allows to improve in-
equality I2 to u1 + u2 ≤ |F | (instead of u1 + 2u2 ≤ 2|F |).
To prove the new inequality, note that the subset U1,2 of G

′ is determined
in Step 3.1 as a minimum b-edge-cover of (V, E). By construction it follows
that U = U1,2 ∪ U3 ∪ · · · ∪ Um is feasible for the given instance of Gene-
ralized-Set-Covering. Moreover, with F ′ = F \ (U3 ∪ · · · ∪Um) the set
{eg : g ∈ F ′} is also a b-edge-cover of (V, E). Because U1,2 is the disjoint
union of (the new sets) U1 and U2 and is a minimum b-edge-cover it follows

|U1,2| = u1 + u2 ≤ |F ′| ≤ |F |.(4.7)

With this inequality (instead of inequality I2) we are led to consider a
positive linear combination of type (4.6) with the coefficient 1/2 of I1

replaced by 1/3. This reduces the contribution of I1 to the coefficient of
F on the right hand side by 1/6. As the other factors remain unchanged,
the bound of (b) follows.

4.3.4. Covering via r-Improvements. The aim of this subsection is
to analyze an additional refinement of Algorithm 4.3.3 by means of r-im-
provements. The first step on the way to improved bounds is to study the
impact of r-improvements separately (Theorem 4.3.5, (a)). Afterwards,
the additional gain of r-improvements applied to a matching-optimal con-
figuration is considered by appending to Algorithm 4.3.3 the following Step
3.2 for some (fixed) t ∈ �0 .

3.2. Apply all r-improvements for r ≤ t to U1∪U2∪U3 that decrease
U without destroying its feasibility.

As in this variant r-improvements are applied only to the set U1∪U2∪U3

the resulting algorithm is faster than the pure exchange-algorithm.
Clearly, because t ∈ � is a fixed parameter, Step 3.2 can be performed in

polynomial time. A trivial upper bound for the running time is O(|G|2t+2).
The geometry of discrete tomography, however, allows to reduce this bound
for many values of t significantly. The reason is that we do not need to
consider all pairs of t- and (t+1)-subsets of G but only those which satisfy
certain compatibility conditions.
A set U ⊂ G (together with an insertion order) is called effect-3-t-optimal

(with respect to this order), if it cannot be decreased by the procedure of
Step 3.2 (presented earlier), i.e. by any r-improvement, on the elements of
effect one, two, and three.
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Theorem 4.3.5.
Let F be a minimum solution for a given instance of Generalized-Set-
Covering and let t ∈ �0 .

(a) Let U be t-optimal for that instance, then

|U |
|F | ≤

m

2
+ εm(t) , where εm(t) =

���
��

m(m−2)

4(m−1)s+1−2m
: if t = 2s;

(m−2)
2(m−1)s−2

: if t = 2s − 1.
(b) Let m = 3 and t = 2s + 1, s ∈ �. Furthermore, assume that U

is matching-optimal and t-optimal (that is here: effect-3-t-optimal)
then,

|U |
|F | ≤

7

5
+ ε′(t) , where ε′(t) =

��
�

6
25·2r+1−15

: if s = 2r − 1;

2
5(5·2r−1)

: if s = 2r.

(c) Let t ≥ 5 and let U be matching-optimal and effect-3-t-optimal then,

|U |
|F | ≤

2

3
+
1

2
+ · · ·+ 1

m
<
2

3
+ log(m).

The values ofm/2+εm(t) in Theorem 4.3.5 (a) form = 3 and t = 0, . . . , 5
are 3, 2, 9

5
, 5

3
, 21

13
, 11

7
and for m = 4 they are 4, 5

2
, 16

7
, 17

8
, 52

25
, 53

26
. The values

of 7/5 + ε′(t) for t = 3, 5, 7, 9, 11 in (b) are 11
7

, 3
2
, 25

17
, 13

9
, 53

37
. Note that

εm(t), ε
′
m(t)→ 0 for t → ∞ for all m ≥ 3. The upper bound for |U |/|F | in

(c) for m = 3, 4, 5 are 3
2
, 7

4
, 39

20
.

Proof of Theorem 4.3.5. (a) is proved by defining a hypergraphH =
(V, E) on the vertex set V = F with edges defined for each g ∈ U that
satisfies (i) and (ii) of Proposition 4.3.2. As in the proof of Theorem 4.3.1
it suffices to prove the result for U ∩ F = ∅. Again, we define a map
ιT : U ∩ T 
→ (U ∪ F )∩ T . This time ιT (u) encodes the information which
element on T is added to compensate the deletion of u. For each query set
T ∈ T let U ∩ T = {ui1 , ui2 , . . . , uia}, F ∩ T = {fj1 , fj2 , . . . , fjb}.
If |F ∩ T | ≥ |U ∩ T | we set ιT (uil ) = fjl for l = 1, 2, . . . , a. If |F ∩ T | <

|U ∩ T | let

ιT (uil ) =

�
fjl : for l ≤ |F ∩ T |, and
uil : otherwise.

Now we define the ‘improvement sets’ Eu for a given u ∈ U by

Eu = {ιT (u) : T � u} ∩ F.
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As in the proof of Theorem 4.3.1 the column degree m gives the bound
in (i) and the t-optimality implies condition (ii) of Proposition 4.3.2 for
t′ = t+ 1. Thus Proposition 4.3.2 can be applied, and the bound given in
(a) follows.
In order to prove (b), let U = U1 ∪ U2 ∪ U3 be a partition of U into

subsets of elements of effect 1, 2 and 3, respectively. As each element u of
U1 has effect 1 we can associate with it the query set T (u) it contributes
to. For T ∈ T let

UT = {u ∈ U1 ∩ T : T = T (u)}.

Because |UT | ≤ φ(T ) ≤ |F ∩ T | for T ∈ T we can define an injection
κT : UT 
→ F ∩ T . Now U1 =

�
T∈T UT , and let κ : U1 
→ F be the

map induced by the injections κT . We show that κ is injective. In fact,
if there were u1, u2 ∈ U1 with κ(u1) = κ(u2) then T (u1) 
= T (u2), whence
(U \ {u1, u2}) ∪ {κ(u1)} was feasible for the given instance of General-
ized-Set-Covering contradicting the 1-optimality of U . It follows that

|U1| = |F1|,(4.8)

where F1 = κ(U1).
For the set of remaining elements F0 = F \F1, we use the fact that there

is no r-improvement for U for any r ≤ 2s+ 1 in order to show

|U2|+ |U3| ≤
�
3

2
+ ε3(s − 1)

�
|F0|.(4.9)

To this end, let us first define the reduced capacity functions

γ(T ) = min{φ(T ), |F0 ∩ T |} for T ∈ Ti,

set U2,3 = U2 ∪ U3, and note that U2,3 is feasible for the instance
I = {γ1, γ2, γ3} of Generalized-Set-Covering. Next, we define a hy-
pergraph H = (F0, E) with |U2,3| edges, again with the aid of maps ιT for
T ∈ T . This time ιT : U2,3 ∩ T 
→ (U2,3 ∪ F0) ∩ T , and ιT (u) encodes the
information which element on T is added to compensate for the deletion
of u in the reduced problem. Let T ∈ T and U2,3 ∩T = {ui1 , ui2 , . . . , uia},
F0 ∩ T = {fj1 , fj2 , . . . , fjb}.
If |F0 ∩ T | ≥ |U2,3 ∩ T | we set ιT (uil ) = fjl for l = 1, 2, . . . , a. If

|F0 ∩ T | < |U2,3 ∩ T | let

ιT (uil) =

�
fjl : for l ≤ |F0 ∩ T |, and
uil : otherwise.
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Now we define the ‘improvement sets’ Eu for a given u ∈ U2,3 by

Eu = {ιT (u) : T � u} ∩ F0.

To obtain (4.9), we want to apply Proposition 4.3.2 to H . Clearly,
condition (i) of Proposition 4.3.2 holds with m = 3. Next, we show that
condition (ii) holds with parameter s. Assume on the contrary that there
are l + 1 sets Eui1

, . . . , Euil+1
, with l + 1 ≤ s, that cover only l elements

f1, . . . , fl ∈ F0 and let l be minimal with this property.

Let Û = {ui1 , . . . , uil+1}, F̂ = {f1, . . . , fl} and set S = (U2,3 \ Û) ∪ F̂ .

Of course, S results from U2,3 via an l-improvement. While eU2,3\Û (Û)

〈eU2,3\Û (F̂ )〉 denotes the effect of Û 〈F̂ 〉, with respect to U2,3 \ Û and

the original data (φ), and ē be the corresponding effect-function for the
reduced data (γ). We show that

eU2,3\Û (Û) ≤ eU2,3\Û (F̂ ) + l + 3.(4.10)

Of course, eU2,3\Û (Û) ≤ 3l + 3 and, as S is feasible for I , ēU2,3\Û (Û) =

ēU2,3\Û (F̂ ). Further, it follows from the minimality of l that ēU2,3\Û (Û) ≥
2l. In fact, if ēU2,3\Û (Û) ≤ 2l − 1 then there must exist an f ∈ F̂ of effect

1 with respect to U2,3 \ Û and the reduced data, hence

(U2,3 \ (Û \ {uf})) ∪ (F̂ \ {f}),

where uf is an element of Û on the query set T that carries the effect of f ,
would constitute an (l − 1)-improvement. This contradiction implies that

eU2,3\Û (F̂ ) + l + 3 ≥ ēU2,3\Û (F̂ ) + l + 3 = ēU2,3\Û (Û) + l + 3 ≥ 3(l + 1),

as claimed.
Next we want to lift the l-improvement for U2 ∪ U3 to an r-im-

provement for U1 ∪ U2 ∪ U3 with r ≤ 2l. From (4.10) we know that

e∅

��
(U1 ∪ U2,3) \ Û

�
∪ F̂

�
≥ e − (l + 3). Hence it suffices to add at most

l + 3 suitable elements {g1, g2, . . . , gl′} of F1 to ensure that�
(U1 ∪ U2,3) \ Û

�
∪
�
F̂ ∪ {g1, g2, . . . gl′}

�

is feasible. Furthermore, the elements κ−1(g1), . . . , κ
−1(gl) can be deleted

from U1 without destroying feasibility, i.e.,�
(U1 ∪ U2,3) \

�
Û ∪ {h1, h2, . . . hl′}

��
∪
�
F̂ ∪ {g1, g2, . . . gl′}

�
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is feasible for the (original) data (φ). Let r = l + l′, then r ≤ 2l + 3 ≤
2s + 1 = t. Hence, the existence of this lifted r-improvement contradicts
the t-optimality of U . So, Property (ii) holds, Proposition 4.3.2 can be
applied, and (4.9) follows.
In order to derive the bound of (b), inequality (4.8), matching-optimality

(i.e. inequality (4.7)), and the bound 3|F | on the total effect of U are
combined to obtain

3|U | = |U1|+ (|U1|+ |U2|)� �� �
≤|F |

+(|U1|+ 2|U2|+ 3|U3|)� �� �
≤3|F |

≤ |F1|+ 4|F |.(4.11)

Furthermore, inequality (4.9) implies

|U | = |U1|+ (|U2|+ |U3|) ≤ |F1|+
�
3

2
+ ε3(s − 1)

�
|F0|.(4.12)

Multiplying (4.11) with 1
2
+ ε3(s−1), adding (4.12) and using |F0|+ |F1| =

|F | then gives �
5

2
+ 3ε3(s − 1)

�
|U | ≤

�
7

2
+ 5ε3(s)

�
|F |,

which implies assertion (b).
So we proved for m ≥ 3, s ∈ �, t = 2s + 1, and U a matching-optimal

and effect-3-t-optimal set that

|U1| = |F1| and
|U1|+ |U2|+ |U3| ≤ |F |+

�
1
2
+ ε3(s − 1)

�
|F0|.(4.13)

Finally, we turn to assertion (c). First, we form the positive linear
combination

1

m
Im +

m−1�
l=4

1

l(l + 1)
Il.

of the inequalities (4.5) derived in the proof of Theorem 4.3.4. Collecting
terms for U1, . . . , Um yields

1

4
|U1|+ 2

4
|U2|+ 3

4
|U3|+ |U4|+ · · ·+ |Um| ≤

�
1 +

1

5
+ · · ·+ 1

m

�
|F |.

Thus it remains to show that
3

4
|U1|+ 2

4
|U2|+ 1

4
|U3| ≤ 3

4
|F |.

Because of 5 ≤ t = 2s + 1, we can apply (4.13) for s = 2. This yields

2|U1|+ |U2|+ |U3| ≤ 2|F |.
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Matching-optimality implies again

|U1|+ |U2| ≤ |F |,
whence addition of these inequalities gives

3|U1|+ 2|U2|+ |U3| ≤ 3|F |.
This concludes the proof of Theorem 4.3.5.

4.4. PTAS for Dense Instances

Let γ > 0 and δ ≥ 1 be two constants. For an instance I of General-
ized-Set-Packing 〈Generalized-Set-Covering〉 let αI 〈βI〉 denote the
LP-optimum of I i.e., the solution of the LP-relaxation (4.3) 〈(4.4)〉. Then
I is called (γ, δ)-dense if

αI ≥ γ|MI |δ, βI ≥ γ|MI |δ,
where MI is the cardinality of |TI |. Further, let I(γ,δ) denote the family
of all instances of Generalized-Set-Packing 〈Generalized-Set-Cov-
ering〉 which are (γ, δ)-dense. Note that it can be checked in polynomial
time whether a given instance I belongs to I(γ,δ).
We have the following approximability result, showing that for dense

instances we have a polynomial time approximation scheme (PTAS).

Theorem 4.4.1.
Let 1 < δ and γ > 0. Then there exist PTAS for Generalized-Set-
Packing 〈Generalized-Set-Covering〉 when restricted to I(γ,δ).

Proof. Let ε > 0, and set

M0 :=

��
1

εγ

� 1
δ−1

�
.

We show that for all instances I withMI ≥ M0 the relative error of a greed-
ily rounded basic LP-solution is smaller than ε. As M0 is a constant, all
smaller instances can be solved exactly in constant time, e.g. by complete
enumeration.
So, let I ∈ I(γ,δ) with MI ≥ M0, and let F be an optimal solution.

Further, let F ′ be a solution for the given instance of Generalized-
Set-Packing 〈Generalized-Set-Covering〉 obtained from a basic LP-
solution by rounding down 〈up〉 the fractional values to 0 〈1〉. Then, of
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course,
|F ′| ≥ αI − MI 〈|F ′| ≤ βI +MI〉,

whence

|F ′|
|F | ≥ |F ′|

αI
≥ 1− MI

αI

� |F ′|
|F | ≤ |F ′|

βI
≤ 1 +

MI

βI

�
.

Because I is (γ, δ)-dense and MI ≥ M0 =

��
1
εγ

� 1
δ−1

�
, we have

MI

αI
≤ MI

γMδ
I

=
1

γMδ−1
I

≤ 1

γMδ−1
0

≤ 1

γ

��
1
εγ

� 1
δ−1

�δ−1
= ε

〈and similarly M/βI ≤ ε〉. Hence
|F ′|
|F | ≥ 1− ε

�
|F ′|
|F | ≤ 1 + ε

�
.

4.5. Application to Stable Set Problem

For this section we apply the general results of Subsection 4.3.2 to the
stable set problem for graphs of degree bounded by ∆ defined in the fol-
lowing.

Stable-Set∆.

Instance: A graph G so that no vertex of it has degree
greater than ∆.

Output: A set that is stable in G and of maximal cardinal-
ity.

In Papadimitriou and Yannakakis [PY91, Thm. 2(c)] is shown that
the (there “INDEPENDENT SET-B” called) Problem Stable-Set∆ is
� � � ���-complete, but they point out the existence of a simple greedy
algorithm approximating within 1/∆. Furthermore, in Alon, Feige, Wigder-
son, and Zuckerman [AFWZ95, Thm. 3.1] is shown, that there exists an
ε > 0 such that it is ��-hard to approximate Stable-Set∆ within ∆ε on
graphs with maximum degree at most ∆.
By contrast, we give here an argument (derived in [HS89] directly from

Proposition 4.3.2) demonstrating that for every ε > 0 there is a polynomial
time algorithm that approximates Stable-Set∆ with performance 2

∆
− ε.
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To this end let A denote the edge-vertex incidence matrix and notice
that the column-degree of A(G) is at most ∆ if G has maximal degree
∆. The stable set problem reduces to a Generalized-Set-Packing with
b = 1. Now a straight application of Theorem 4.3.1 shows that running an
algorithm that guarantees upon termination t-optimality of the solution
grants a performance of at least 2

∆
− ε∆(t). So given ε we can compute t so

that ε∆(t) < ε. Now a greedy algorithm followed by doing exchanges until
t-optimality is reached will always approximate better than ε. So we have
proved the next theorem.

Theorem 4.5.1.
The problem Stable-Set∆ can for every ε > 0 be approximated within
2
∆

− ε within polynomial time.

4.6. Application to Discrete Tomography

In the present section we want to specialize the general approximability
results of the Sections 4.3 and 4.4 to discrete tomography and report
computational results for this application.
Various approaches have been suggested for solving the general recon-

struction problem of discrete tomography, and various theoretical results
are available; see e.g. [Gri97] for a survey. In the present section we con-
centrate on approximative solutions by applying the results of Sections 4.3
and 4.4. Even though most of the resulting combinatorial optimization
problems are ��-hard, the application of the results in Section 4.3 implies
that some (relatively) simple algorithms yield already very good worst-case
bounds. As Subsection 4.6.4 will indicate, these algorithms perform even
better in computational practice.
Let us close these remarks with a word of warning. Typically, when one is

dealing with optimization problems in practice it is completely satisfactory
to produce solutions that are close to optimal. For instance, a tour for a
given instance of the traveling salesman problem that is off by only a few
percent is for many practical purposes almost as good as an optimal tour.
This is due to the fact that the particular optimization is typically just
part of a much more complex real world task, and the improvement over
existing methods is governed by so many much harder to influence factors
that a small error in the optimization step does not really matter by any
practical means. This is different in the context of our prime application.
The relevant measure for the quality of an approximation to a binary
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image would of course be the deviation from this image. Hence in order to
devise the most appropriate objective function one would have to know the
underlying solution of the given inverse problem. However, the whole point
is of course to find this unknown solution. Hence one can only consider
objective functions with respect to which the approximation is evaluated
that are based on the given input data. While a good approximation in this
sense is close to a solution in that its X-ray images in the given directions
are close to those of the original set, the approximating set itself may be off
quite substantially. In fact, the inverse discrete problem is ill-posed and it
is precisely this property that causes additional difficulties. In particular,
if the input data do not uniquely determine the image even a “perfect”
solution that is completely consistent with all given data may be quite
different from the unknown real object.
Obviously there is more work to be done to handle the ill-posedness

of the problem in practice. Hence, the results of this section should be
regarded only as a first (yet reassuring!) step in providing a computational
tool that is adequate for the real world applications outlined previously.
In particular, our approximation algorithms can be used to provide lower
bounds in branch-and-cut approaches, that incorporate strategies to handle
the nonuniqueness of solutions and the presence of noise in the data.

4.6.1. Two Optimization Problems. For measuring the quality of
approximation methods in discrete tomography, we introduce objective
functions so as to formulate the Reconstruction problem as optimization
problems. Two very natural such formulations are the following problems
Best-Inner-Fit and Best-Outer-Fit.

Best-Inner-Fit (S1, . . . , Sm).

Instance: Candidate functions φ1, . . . , φm.

Output: A set F ⊂ G of maximal cardinality such that
XSiF (T ) ≤ φi(T ) for all T ∈ Ti and i = 1, . . . , m.

The elements of Ti correspond correspond to lines parallel to Si on
which there is a nonzero measurement. Then the grid G is implicitly
defined as the set of points that belong for each direction to a line with
nonzero measurement. An element of Ti is finally the intersection of the
corresponding line with G. Best-Inner-Fit can be formulated equivalently
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as the integer linear program

max 1T x s.t.(4.14)

Ax ≤ b, and x ∈ {0, 1}G,

where 1 is the all-ones vector.
The “outer counterpart” of this inner approximation is defined as follows.

Best-Outer-Fit (S1, . . . , Sm).

Instance: Candidate functions φ1, . . . , φm.

Output: A set F ⊂ G of minimal cardinality such that
XSiF (T ) ≥ φi(T ) for all T ∈ Ti and i = 1, . . . , m.

Again, the problem is equivalent to an integer linear program, precisely to

min 1T x s.t.(4.15)

Ax ≥ b, and x ∈ {0, 1}G.

Notice that every instance (φ1, . . . , φm) of Best-Inner-Fit (S1, . . . , Sm)
〈Best-Outer-Fit ((S1, . . . , Sm)〉 can be considered also an instance of
Generalized-Set-Packing 〈Generalized-Set-Covering〉 by defining
φ(T ) = φi(T ) for T ∈ Ti. Furthermore, the number of directions m of an
tomography problem provides at the same time the column degree of the
corresponding matrix A.
The two problems Best-Inner-Fit and Best-Outer-Fit are comple-

mentary to each other in the same way asGeneralized-Set-Packing and
Generalized-Set-Covering are as described in Subsection 4.2.1.
Let us remark in passing that one can of course consider other kinds

of optimization problems related to Reconstruction(S1, . . . , Sm). For
instance, rather than measuring the approximability in terms of the points
inserted into the candidate grid one may count the number of lines on which
an X-ray of a solution coincides with the given value of the corresponding
candidate function. An intractability result for this kind of approximation
can be found in [GPVW98].
Given that Best-Inner-Fit 〈Best-Outer-Fit〉 are just special cases

of the problems Generalized-Set-Packing 〈Generalized-Set-Cover-
ing〉 of course the Paradigms 4.2.1 and 4.2.2 can be applied too, so the
Theorems 4.3.1, 4.3.4, and 4.3.5 carry directly over to solve Best-Inner-
Fit and Best-Outer-Fit. Additionally, as back-projection is a possible
solution strategy for continuous tomography, similarly one can use back-
projection-like weights to express preferences among different candidate
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positions in Paradigm 4.2.1, see Algorithm 4.6.1. Additionally, connectivity
of the solution (in a sense that is justified by the physical structure of the
analyzed material) could be rewarded by introducing adjustable weights.
Similarly, information from neighboring layers can be taken into account in
a layer-wise reconstruction of a 3-dimensional object. In fact, the positive
results of Section 4.3 will apply to the general paradigm.
Clearly there are smarter ways to insert points into the grid than by

just greedily putting one in when it fits. A more natural strategy is, for
example, to apply a back-projection technique, where each candidate point
gets a weight based on the X-ray values of all lines through this point. A
typical example is given in Algorithm 4.6.1. In this algorithm, a specific
direction S1 is chosen, which dictates the order in which candidate points
are considered for insertion into the set of points L that will eventually
form V and the set of holes E (that is disjoint from V ). For a fixed line
T parallel to S1, each point g on T gets a weight which depends on the
number of points still to be inserted and on the number of candidate points
still available on the lines g+Si for i ≥ 2, cf. Step 2.1. The corresponding
ratio is a value in [0, 1]. A value of 0 for a line g + Si indicates, that the
point g cannot be inserted into L and a value of 1 indicates that the point
must be inserted into L. Therefore, the product over all m − 1 other lines
is a natural indicator for comparing the relative importance of the points
on line T .

Algorithm 4.6.1 (Weighted greedy strategy).
• INPUT: Candidate functions φ1, . . . , φm for the given directions

S1, . . . , Sm.
• OUTPUT: A set L ⊂ G feasible for the given instance of Best-
Inner-Fit.

• COMPUTATION:
1. Initialize L = E = ∅ and choose a specific direction, say S1.
2. For all T ∈ T1 do:

2.1. For all g ∈ G ∩ T determine

wg =
m�

i=2

φi(g + Si)− |(g + Si) ∩ L|
|(G \ (L ∪ E)) ∩ (g + Si)|

.

2.2. Sort G∩T according to decreasing weights wg, g ∈ G∩T
and add the

min{φ1(g + S1), |{g ∈ G ∩ T : wg > 0}|}



4.6. Application to Discrete Tomography 83

first elements of G ∩ T to L and the remaining ones to
E.

It is a well-known result already given by Lorentz, see [Lor49], that this
strategy (with a proper ordering of the lines) leads to an exact algorithm
for m = 2 directions for consistent instances in the plane, cf. [Rys63,
Chap. 6]. This suggests, that Algorithm 4.6.1 might be substantially
better for arbitrary m than the pure greedy algorithm, an expectation
that is confirmed by the experiments stated in Subsection 4.6.4.
Let us point out that the solutions produced by the variant of Algo-

rithm 4.6.1 that is obtained by replacing the weights wg by

w′
g =

m�

i=1

φi(g + Si)− |(g + Si) ∩ L|
|(G \ (L ∪ E)) ∩ (g + Si)|

.

coincide with the solutions produced by Algorithm 4.6.1. In fact, while
w′

g usually differs from wg, the order of points on a line in direction S1

produced by these weights are the same. As for variants, we implemented
versions of the algorithm where the

�
in the definition of w′

g is replaced
by a

�
. But these variants performed weaker than the originally given.

Direct application of Theorem 4.4.1 shows that for dense classes of in-
stances of Reconstruction(S1, . . . , Sm), LP-based approximation leads
to a polynomial-time approximation scheme.

4.6.2. Sharpness of the Bounds for Best-Inner-Fit. The following
examples show, that the bounds given in Theorem 4.3.1 are tight in the
worst case already in the most basic situations.

Example 4.6.2.
Let m ≥ 3 and let u1, . . . , um ∈ �d be m pairwise different lattice direc-
tions in Ed. Let F = {ν1u1, . . . , νmum} ⊂ �

d for some scaling factors
ν1, . . . , νm ∈ � \ {0}. The X-rays of F in the directions u1, . . . , um are
taken as candidate functions for an instance of Best-Inner-Fit. If the
factors νi are chosen so that G = F ∪{0} then V = {0} is a greedy-optimal

solution for Best-Inner-Fit. Of course |V |
|F | =

1
m

, see Figure 4.1.

Example 4.6.3.
Let m = 3 and let u1, u2, u3 ∈ �2 be the directions (1, 0), (0, 1), (1, 1). The
X-rays of F = {(0, 1), (1, 1), (2, 2), (3, 2)} in the directions u1, u2, u3 are
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Figure 4.1. The greedy bound is tight. (Grey points
belong to F, the black point constitutes V .)

taken as candidate functions for an instance of Best-Inner-Fit. Then

V = {(1, 2), (2, 1)} is 1-optimal and |V |
|F | =

1
2
= 2

3
− ε3(1), see Figure 4.2.

◦ ◦ ◦ ◦
◦ ◦ • •
• • ◦ ◦
◦ ◦ ◦ ◦

◦ ◦ ◦ ◦
◦ • ◦ ◦
◦ ◦ • ◦
◦ ◦ ◦ ◦

Figure 4.2. The 1-optimality bound is tight for three
directions. (Black points denote F in the left picture
and V in the right picture)

Example 4.6.4.
Let m = 4 and let u1, u2, u3, u4 ∈ �2 be the directions (1, 0), (0, 1), (1, 1),
(1, 2). The X-rays of F = {(0, 0), (1, 5), (3, 4), (4, 3), (5, 3)} in the directions
u1, u2, u3, u4 are taken as candidate functions for an instance of Best-

Inner-Fit. Then V = {(1, 0), (5, 5)} is 1-optimal and |V |
|F | =

2
5
= 2

4
−ε4(1),

see Figure 4.3.

Example 4.6.5.
Let m = 5 and let u1, . . . , u5 ∈ �2 be the directions (1, 0), (0, 1), (1, 1), (1, 2),
(2, 1) The X-rays of F = {(0, 0), (0, 3), (1, 3), (2, 5), (4, 3), (5, 4)} in the
directions u1, . . . , u5 are taken as candidate functions for an instance of
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◦ • ◦ ◦ ◦ ◦
◦ ◦ ◦ • ◦ ◦
◦ ◦ ◦ ◦ • •
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ •
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ • ◦ ◦ ◦ ◦

Figure 4.3. The 1-optimality bound is tight for four
directions. (Black points denote F in the left picture
and V in the right picture)

Best-Inner-Fit. Then V = {(2, 4), (5, 5)} is 1-optimal and |V |
|F | =

1
3
=

2
5
− ε5(1), see Figure 4.4.

◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ •
• • ◦ ◦ • ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
• ◦ ◦ ◦ ◦ ◦

◦ ◦ ◦ ◦ ◦ •
◦ ◦ • ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦

Figure 4.4. The 1-optimality bound is tight for five di-
rections. (Black points denote F in the left picture and
V in the right picture)

4.6.3. Description of the Implementations. We implemented 6 dif-
ferent algorithms for Best-Inner-Fit. The first algorithm (GreedyA) is
the plain greedy algorithm (see Figure 4.5) which considers all positions in
a random order and tries to place atoms at these positions. The second al-
gorithm (GreedyB) is a variant of the line following greedy Algorithm 4.6.1
(Figure 4.6). The algorithm chooses a direction with maximal support |Ti|.
Suppose—in accordance with the notation in Algorithm 4.6.1—that i = 1.
The lines T ∈ T1 are then considered with respect to decreasing line weights

φ1(T )/|G ∩ T |.
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procedure GreedyA
Calculate a random permutation of all points
For each point in the order of this permutation do
Check whether any line passing through this point is saturated
If no line is saturated then
Add the point to the solution set
Update the sums of the lines passing through this point

Figure 4.5. The plain greedy solver.

The algorithm usually performs quite well. However, if one considers
the ‘en block’ point insertion procedure successively, i.e. as a point-by-
point insertion, then the adapted line weights change and at some point—
possibly long before the last point of the block has been inserted—another
line might be more profitable. This idea is pursued in a third greedy
algorithm (GreedyC) which changes the weights of all lines and uninspected
points after a new point is placed; see Figure 4.8. The initial problem with
this strategy is of course, that after each insertion a complete search for
the next position of maximum weight is necessary. This increases the
computation times dramatically. A good data-structure for keeping the
points (partially) ordered according to their weights is a heap. After a point
insertion, it suffices to update the weights of points on lines through the
new point. While a heap can perform this quite efficiently, this procedure is
still time consuming because the weights of points may change frequently,
without the element even being close to the top of the heap. We decided
therefore to use a lazy-update. For this we take the top element of the
heap and recompute its weight. Then we compare its stored weight with
its actual weight (they might differ due to recent insertions). If the weights
are equal, this is still the top element of the heap, and we can try to insert
it. If the weights differ, the candidate point gets the new weight and the
heap needs to be restructured. After the restructuring we start again with
the (new) top element.
The last type of algorithm is the 1-improvement algorithm according

to Paradigm 4.2.1. We tried three different variants (ImprovementA,
ImprovementB, and ImprovementC) depending on the greedy algorithm
(GreedyA, GreedyB, and GreedyC) used first. As the 1-improvement al-
gorithm needs already very long for some instances and the results are very
good, we did not dare to implement higher improvement algorithms (like
2-improvement, etc.).
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procedure GreedyB
Determine a direction with maximal support
Sort the lines parallel to that direction by descending line-weights
For each of these lines (T ) in this order do

For each point on T do
Calculate its weight (the product of the line-weights)

Sort the points on T with respect to descending weights
For each point in this order do
Check whether any line passing through this point is saturated
If no line is saturated then
Add the point to the solution set
Update the sums of the lines passing through this point

Figure 4.6. The line following greedy solver.

procedure GreedyC
For each point do
Calculate the weight of the point (the product of the relative line capacities)

and insert it into the heap
While there are still points in the heap do
Find the maximum weight and a corresponding point and remove it from the heap
Check whether any line passing through this point is saturated
If no line is saturated then
Add the point to the solution set
Update the sums of the lines passing through this point

Figure 4.7. The dynamically reordering greedy solver.

4.6.4. Performance of the Implemented Algorithms. In this sub-
section we report on different experiments we conducted with the algo-
rithms described in the previous subsection. We performed several tests
for problems of size 20×20 to 500×500, with 2 to 5 directions and of den-
sity between 1%, 5%, 20%, and 50%. Surprisingly, the outcomes are almost
independent (up to artifacts) of the density of the instances.
Even though our program can solve problems in three dimensions and

on arbitrary crystal-lattices, we decided to present here only results for 2-
dimensional problems on the square lattice, as in the physical application
all directions belong to a single plane (therefore the problem can be solved
in a slice by slice manner); furthermore this restriction should facilitate the
comparison with other, less general codes currently under development by
various research groups.
Whenever we report either running-times or performances, we report the

average of 100 randomly generated instances. We decided here for random
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procedure Improvement[ABC]
Calculate a solution U according to GreedyA, GreedyB, or GreedyC
Repeat

For each point (p1) of the candidate grid do
If p1 ∈ U then continue with the next point
If no line passing through p1 is saturated then
Add p1 to U
Update the sums of the lines passing through p1
Continue with the next point

If more than one line passing through p1 is saturated then
continue with the next point

For each point (p2) of U on the saturated line do
For each non-saturated line (T1) through p1 do
Calculate the line (T2) parallel to T1 passing through p2
For each point (p3) on T2 not in U do
If the lines passing through p3 and

not containing p1 or p2 are non-saturated and
the line passing through p3 and p1 (if existent)
has at least one point not in U then
Perform the improvement:
Remove p2 from U
Add p1 to U
Add p3 to U

Update the sums of all lines passing through p1, p2 or p3
Continue with the next point

Until no improvement was done in the last loop

Figure 4.8. The improvement solvers.

instances for two reasons. The first reason is that we still lack sufficient
experimental data from the physicists. On the other hand, it is typically
easy to detect and then eliminate invariant points i.e., points that either
must belong to every solution or do not belong to any solution. Because the
invariant points carry much of the physical a priori knowledge the reduced
problem tends to be quite unstructured.
To obtain a random configuration of prescribed density, we generate a

random permutation of the positions of the candidate grid and then place
atoms in this order until the described density is reached. After calculating
the lines and their sums we discard the configuration itself. Then we
preprocessed the problem by calculating the incidence tables, which are
necessary for all algorithms. The running-times we report were obtained on
an SGI Origin 200 computer with four MIPS R10000 processor at 225MHz
with 1GB of main memory by running at most three test programs at the
same time.



4.6. Application to Discrete Tomography 89

Note that all instances are consistent. This has two reasons. First,
for inconsistent problems we need the exact solution to evaluate the per-
formance of the heuristics. But for the relevant dimensions there are at
present no algorithms available that produce exact solutions in reasonable
time. The second reason is that the true nature of the error-distribution
for the real physical objects has not been experimentally determined by
the physicists yet. So it is not clear how to perturb an exact instance to
obtain inconsistent problems in a physically reasonable manner.
Now we discuss the results for 50% dense instances. The performance

plotted in Figure 4.21 is the quotient of the cardinality of the approximate
solution to that of an optimal solution. The closer it is to 1 the better
the result is. It turns out, that the larger the problems, the better every
algorithm performs in terms of relative errors (see Figure 4.21). Obviously,
postprocessing the output of some greedy algorithm with an improvement
algorithm cannot decrease the performance (usually it improves the perfor-
mance). However, it turns out that GreedyB outperforms ImprovementA
(for 4 and 5 directions) and that GreedyC performs better than Improve-
mentB (for 5 directions; for 4 directions they are similar and for 3 directions
ImprovementB is better).
The running-times for the algorithms GreedyA and GreedyB are less

than 4 seconds for all instances (of size up to 500×500) of density 50%. The
application of the 1-improvements to their results increases the running-
time to up to 100 seconds. Generally GreedyA and ImprovementA take
about half the time of GreedyB and ImprovementB, respectively.
The running-times of GreedyC and ImprovementC increase much faster

than those for the other algorithms. Still, they take only up to 1300
seconds. This is long, but in fact, these algorithms provide very close
approximations while presently available exact algorithms seem incapable
of solving 500×500 problems in less than a century. Furthermore, knowing
a solution for a neighboring slice should speed up the solution of the next
slice by a good amount; so there is hope of solving even 500 × 500 × 500
real-world problems in time that is acceptable in practice.
The better of the presented algorithms are that good, that it makes

sense to compare their absolute errors (see Figure 4.22). As can be seen,
the absolute error for ImprovementC seems constant for 3 directions. (Of
course, it follows from [GGP99] that asymptotically there must be a more
than constant worst-case error unless � = ��.) For four and five directions

the absolute error appears to be O(
�

|G|).
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Figure 4.9. Relative performance for 3 (top), 4 (mid-
dle), and 5 (bottom) directions on instances of 1% density

for GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the relative perfor-
mance.



4.6. Application to Discrete Tomography 91

0

20

40

60

0.4e3 10e3 32.4e3 67.6e3 116e3 176e3 250e3

0

50

100

150

200

0.4e3 10e3 32.4e3 67.6e3 116e3 176e3 250e3

0

100

200

300

0.4e3 10e3 32.4e3 67.6e3 116e3 176e3 250e3

Figure 4.10. Absolute error for 3 (top), 4 (middle),
and 5 (bottom) directions on instances of 1% density for

GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the absolute error
at a linear(!) scale.
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Figure 4.11. Running-times for 3 (top), 4 (middle),
and 5 (bottom) directions on instances of 1% density for

GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the running times
in seconds at a logarithmic scale.
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Figure 4.12. Distribution of error for 100 instances
with 5002 variables, density 1%, and 3 ( ), 4 ( ), and
5 ( ) directions. Depicted are: GreedyA (top left), Im-
provementA (top right), GreedyB (middle left), Improve-
mentB (middle right), GreedyC (bottom left), and Im-
provementC (bottom right). The abscissa depicts the
absolute error on a line at a logarithmic scale and the
ordinate depicts the average number of lines with this
error at a logarithmic scale.
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Figure 4.13. Relative performance for 3 (top), 4 (mid-
dle), and 5 (bottom) directions on instances of 5% density

for GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the relative perfor-
mance.
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Figure 4.14. Absolute error for 3 (top), 4 (middle),
and 5 (bottom) directions on instances of 5% density for

GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the absolute error
at a logarithmic scale.
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Figure 4.15. Running-times for 3 (top), 4 (middle),
and 5 (bottom) directions on instances of 5% density for

GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the running times
in seconds at a logarithmic scale.
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Figure 4.16. Distribution of error for 100 instances
with 5002 variables, density 5%, and 3 ( ), 4 ( ), and
5 ( ) directions. Depicted are: GreedyA (top left), Im-
provementA (top right), GreedyB (middle left), Improve-
mentB (middle right), GreedyC (bottom left), and Im-
provementC (bottom right). The abscissa depicts the
absolute error on a line at a logarithmic scale and the
ordinate depicts the average number of lines with this
error at a logarithmic scale.
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Figure 4.17. Relative performance for 3 (top), 4 (mid-
dle), and 5 (bottom) directions on instances of 20% den-

sity for GreedyA ( ), ImprovementA ( ), GreedyB ( ),
ImprovementB ( ), GreedyC ( ), and ImprovementC
( ). The abscissa depicts the number of variables at
a quadratic scale and the ordinate depicts the relative
performance.
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Figure 4.18. Absolute error for 3 (top), 4 (middle), and
5 (bottom) directions on instances of 20% density for

GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the absolute error
at a logarithmic scale.
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Figure 4.19. Running-times for 3 (top), 4 (middle), and
5 (bottom) directions on instances of 20% density for

GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the running times
in seconds at a logarithmic scale.
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Figure 4.20. Distribution of error for 100 instances with
5002 variables, density 20%, and 3 ( ), 4 ( ), and 5
( ) directions. Depicted are: GreedyA (top left), Im-
provementA (top right), GreedyB (middle left), Improve-
mentB (middle right), GreedyC (bottom left), and Im-
provementC (bottom right). The abscissa depicts the
absolute error on a line at a logarithmic scale and the
ordinate depicts the average number of lines with this
error at a logarithmic scale.
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Figure 4.21. Relative performance for 3 (top), 4 (mid-
dle), and 5 (bottom) directions on instances of 50% den-

sity for GreedyA ( ), ImprovementA ( ), GreedyB ( ),
ImprovementB ( ), GreedyC ( ), and ImprovementC
( ). The abscissa depicts the number of variables at
a quadratic scale and the ordinate depicts the relative
performance.
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Figure 4.22. Absolute error for 3 (top), 4 (middle), and
5 (bottom) directions on instances of 50% density for

GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the absolute error
at a logarithmic scale.
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Figure 4.23. Running-times for 3 (top), 4 (middle), and
5 (bottom) directions on instances of 50% density for

GreedyA ( ), ImprovementA ( ), GreedyB ( ), Im-
provementB ( ), GreedyC ( ), and ImprovementC ( ).
The abscissa depicts the number of variables at a qua-
dratic scale and the ordinate depicts the running times
in seconds at a logarithmic scale.
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Figure 4.24. Distribution of error for 100 instances with
5002 variables, density 50%, and 3 ( ), 4 ( ), and 5
( ) directions. Depicted are: GreedyA (top left), Im-
provementA (top right), GreedyB (middle left), Improve-
mentB (middle right), GreedyC (bottom left), and Im-
provementC (bottom right). The abscissa depicts the
absolute error on a line at a logarithmic scale and the
ordinate depicts the average number of lines with this
error at a logarithmic scale.
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Another (practically) important issue is that of the distribution of errors
among different lines. For this we counted for 100 problems (of size 500 ×
500) how many constraints were satisfied with equality, how many needed
only one more point for equality, and so on. Again, it turned out, that the
algorithms GreedyC and ImprovementC have the best error distribution.
In particular, for GreedyC no line occurred with error greater one for 3
and 4 directions, for 5 directions the worst cases were four instances with a
single line of error 2. For ImprovementC the worst cases were two instances
with two lines of error 2 for 3 directions, for 4 directions one instance with
a single line of error 8 and for 5 directions seven instances with a single
line of error 4. In contrast to the simple maximization problem, here the
1-improvements can make a solution worse (with respect to this measure),
as it may happen that in a number of improvement steps atoms from the
same line are removed.
For GreedyC only lines with error at most 2 occur, while for Improve-

mentC a single instance with a line of error 8 came up. In contrast,
GreedyA, GreedyB, ImprovementA, and ImprovementB have always a cou-
ple of lines with a huge error (see Figure 4.24). For instance, for GreedyA,
ImprovementA and GreedyB instances occurred with lines of error 66, 122,
and 154 for 3 to 5 directions. ImprovementB is better, in that errors oc-
curred only up to 25, 35, and 72. These huge errors do seem inappropriate
in the physical application because it is more likely that many lines occur
with small error, than some with very large error.
The results for the other densities 1%, 5%, 20% are similar except that for

very sparse and small problems an artifact crept into the graphs: it turns
out that small, sparse instances are exceptionally well solved, because it
is easy to see that (for example) problems with two directions and every
linesum at most of value one are already solved exactly by the greedy
algorithm.



CHAPTER 5

Antiwebs and Antiweb-Wheels for
Stable Set Polytopes

5.1. Introduction

Most of the notation we need was already presented in Subsection 2.4.6,
here we need only to mention another important class of inequalities, called
antiweb inequalities. This class contains both cycle and clique inequalities.
Given a class of valid inequalities, C, for STAB(G), and a polyhedron

P ⊇ STAB(G) the corresponding separation problem is: Given x∗ ∈ P ,
does x∗ violate any of the inequalities in C? If the answer is yes, ex-
hibit such an inequality. This problem is important if one wants to use
the inequalities in a branch-and-cut method to optimize a linear function
over STAB(G). See, for examples, Barahona, Weintraub, and Epstein
[BWE92] and Nemhauser and Sigismondi [NS92]; for a general branch-and-
cut application-framework see Jünger and Thienel [JT98]. Furthermore, if
a separation problem is solvable in polynomial time, then the correspond-
ing optimization problem can be solved in polynomial time, see Grötschel,
Lovász, and Schrijver [GLS93]. The separation problem for the class con-
sisting of the trivial and edge inequalities with respect to �V

+ can obviously
be solved in O(m) time, but the separation problem for the clique inequal-
ities with respect to ESTAB(G) is ��-hard as proved by Grötschel, Lovász
and Schrijver [GLS81].
In contrast, the separation problem for the odd cycle inequalities with

respect to ESTAB(G) can be solved in polynomial time. The underlying
algorithmic problem of finding minimum weight paths of odd length is first
solved by Grötschel and Pulleyblank [GP81], though they “...attribute it
to ‘Waterloo-folklore’ ...”. The separation algorithm for the odd cycle in-
equalities with respect to ESTAB(G) itself is given in [GLS93]. Hence the
separation problem for the class consisting of the trivial, edge and cycle
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inequalities with respect to �V
+ can be solved in polynomial time. Cheng

and Cunningham [CC97] enlarged the class of polynomially separable in-
equalities by proving that wheel inequalities are separable in polynomial
time. As a building block to generalize their result, we shall prove that
a generalization of the (t)-antiweb inequalities can be separated in poly-
nomial time (Sec. 5.3), even though the separation of antiweb inequalities
is ��-hard (Sec. 5.4). In Section 5.5, we introduce a large new class of
valid inequalities, called antiweb-wheel inequalities, which are a common
generalization of wheel inequalities and antiweb inequalities, and study
in Section 5.6 related separation problems. As one prerequisite for our
separation algorithms to work is that all clique inequalities of prescribed
size are fulfilled, we have to worry about clique separation. One way is
to enumerate all cliques of size at most that bound, that is assumed to
be fixed. The other—theoretically more appealing way—is to separate the
large class of orthonormal representation cuts [GLS93, 9.3.2] (here abbre-
viated by “orthogonality cuts”) but it raises the question whether antiweb
inequalities might be already implied by the class of orthogonality cuts. In
Section 5.8 we show that they are not implied.
We start our study of facetness with Section 5.9 describing three

operations—adding an apex, doubly subdividing an edge, and doing star
subdivision—that can preserve facetness; furthermore their interaction is
studied. The knowledge about these operations is applied in Section 5.10 to
give a complete characterization of the facet inducing inequalities among all
proper antiweb-1-wheel and antiweb-s-wheel inequalities. Finally, we pro-
vide a brief view into questions of facetness for improper antiweb-wheels.
The results of this chapter are joint work with Eddie Cheng.

5.2. Preliminaries

Let n and t be integers such that t ≥ 2, n ≥ 2t−1 and n 
≡ 0 (mod t). An
(n, t)-antiweb AW is a graph with vertex-set {v1, v2, . . . , vn}; two vertices
vi and vj (i > j) are adjacent if k := min{i − j, n + j − i} ≤ t − 1; we
call {vi, vj} a cross-edge of type k, or simply k-edge. A 1-edge may also be
referred to as a rim edge. We define the following distance function for the
vertices of an antiweb with i > j by

dist(vi, vj) = min(i − j, j + n − i).

We denote this antiweb by AW(v1, v2, . . . , vn). (Note that it is an or-
dered list.) The sequence (v1, v2, . . . , vn) is called the spine of the antiweb.
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Figure 5.1. (a) shows a simple (8, 3)-antiweb; (b) shows
the nonsimple antiweb resulting from identifying vertices
v1 and v5 in (a); (c) shows the nonsimple antiweb result-
ing from identifying vertices v2 and v7 in (a).

For an example of an (8, 3)-antiweb see Figure 5.1(a). The class of (·, t)-
antiwebs is referred to as (t)-antiwebs. Thus (2)-antiwebs are odd cycles.
Our definition is slightly different from the one given in Trotter [Tro75] as
we include additionally cliques as antiwebs (in the case n = 2t − 1). An
(n, t)-antiweb contains n different t-cliques, namely, the t-clique Ti on the
vertices {vi, vi+1, . . . , vi+t−1} for i = 1, 2, . . . , n (where the indices j > n
are reduced to 1 + ((j − 1) mod n)). We refer to T1, T2, . . . , Tn as the
generators of the antiweb. The inequality

�n
i=1 xi ≤

�
n
t

�
is the antiweb

inequality described in [Tro75]. If n = 2t − 1, then it is a clique inequal-
ity. If t = 2, then it becomes the cycle inequality. In Euler, Jünger and
Reinelt [EJR87] inequalities of some antiwebs (the class of odd anticycles)
were generalized to independence system polytopes; in Laurent [Lau89], the
full class of antiweb inequalities was studied for independence system poly-
topes. Schulz [Sch96] and Müller and Schulz [MS96] generalize antiwebs
further to the general setting of transitive packing. The stable set problem
for antiwebs is solvable in polynomial time, as they belong to the class
of circular arc graphs for which Golumbic and Hammer [GH88] show that
stable set is easy. A complete description of the stable set polytope by
inequalities is given by Dahl [Dah99] for the case of 3-antiwebs, but nei-
ther the question of their separation is treated nor is anything said about
(t)-antiweb polytopes for t > 3.
We define AtSTAB(G) = {x ∈ ESTAB(G) : x fulfills the (t)-antiweb

inequalities}. In this chapter we will use the term simple G-configurations
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for a simple graph G. Next we consider nonsimple G-configurations. Sup-
pose H is obtained from a graph G by a sequence of identifications
of nonadjacent vertices. Then H is a nonsimple G-configuration. If
at least one of the identification is between adjacent vertices, then it
is a degenerate G-configuration. In either case, we assume any dupli-
cate edge is deleted after an identification (but a copy of each loop is
kept in the degenerate case). The nonsimple configurations turn out to
be more important for the stable set problem under investigation than
the degenerate configurations are. From now on, whenever we identify
two vertices, we assume implicitly that the two vertices are not adja-
cent (unless otherwise specified). For example, Figures 5.1(b), 5.1(c)
show the nonsimple (8, 3)-antiwebs AW(v1,5, v2, v3, v4, v1,5, v6, v7, v8) and
AW(v1, v2,7, v3, v4, v5, v6, v2,7, v8). If G is the support graph of some valid
inequality, then a nonsimple G-configuration H also induces the same in-
equality. (Degenerate G-configurations do not have this property but the
concept is useful later on.) The next simple lemma clarifies this.

Lemma 5.2.1.
Let
�n

i=1 aixi ≤ b be a valid inequality for STAB(G) and let v1 and v2 be
two nonadjacent vertices of G. If H is a nonsimple configuration obtained
from G by identifying v1 and v2 where the vertex v1,2 of H is obtained from
the identification of v1 and v2 of G, then (a1 + a2)x1,2 +

�n
i=3 aixi ≤ b is

a valid inequality for STAB(H).

Proof. This follows from the fact that (x∗
1, x

∗
2, x

∗
3, . . . , x

∗
n)

T (with x∗
1 =

x∗
2) is an incidence vector of a stable set of G whenever (x∗

1,2, x
∗
3, . . . , x

∗
n)

T

is an incidence vector of a stable set of H .

Let H be a graph and H ′ be the nonsimple configuration obtained from
H by a sequence of identifications of vertices. By applying Lemma 5.2.1
repeatedly, a valid inequality for STAB(H) provides a valid inequality for
STAB(H ′). Clearly such a sequence of identifications of vertices induces a
partition of the vertices ofH such thatH ′ is obtained from H by identifying
vertices in the same class of the partition. The antiweb inequality for the
nonsimple antiweb in Figure 5.1(b) is x2+x3+x4+x6+x7+x8+2x1,5 ≤
2. (However, this inequality does not induce a facet as it is the sum of
x6+x7+x8+x1,5 ≤ 1 and x1,5+x4+x3+x2 ≤ 1, both facet inducing.) If
AW is a nonsimple (n, t)-antiweb, we still write it as

�
v∈V (AW) xv ≤ �n/t�

and by convention, we treat V (AW) as a multiset according to the number
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of roles a vertex takes in AW in the corresponding simple configuration.
So for our example, x1,5 appears twice in

�
v∈V (AW) xv. From now on, the

term “class of antiweb inequalities” includes both simple and nonsimple
inequalities; for example, Lemma 5.2.3 applies to simple and nonsimple
antiweb inequalities. For a nonsimple antiweb inequality written in this
form, the following convention is used: Like V (AW), E(AW) is treated as
a multiset according to the number of roles an edge takes in AW as the
graph is simple; for instance, if an edge e has two roles in AW , then it
appears twice in the summation even though it appears once as an edge in
E(AW). For example, {v1, v2,7} in Figure 5.1(c) has the role of a 2-edge
once (viewing it as {v1, v7}) and has the role of a 1-edge once (viewing it
as {v1, v2}).
In terms of separation, it is desirable to write the required inequalities

in a different form. Let f(v) = −1/4+xv/2 and we = (1−xu −xv)/2. (So
2we is the slack for the edge e.) We use f∗ and w∗

e to denote f(v) and we

evaluated at a specific x∗. The next two results give such formulations.

Lemma 5.2.2.
Let IKt be a t-clique inequality with Kt as its support graph. Then IKt can
be rewritten as

−
�

e∈E(Kt)

we − (t − 3)
�

v∈V (Kt)

f(v) +
1

2
t − 1 ≤ 0.(IKt)

Proof. We consider the coefficient of each term. Consider the multi-
variable function

φ = −
�

e∈E(Kt)

we − (t − 3)
�

v∈V (Kt)

f(v) +
1

2
t − 1

and let [p]ψ denote the coefficient of the indeterminate p in ψ and [1]ψ
denotes the constant term for any function ψ.
1. [xv]φ where v ∈ V (Kt): Then [xv](

�
e∈E(Kt)

we) = −(t − 1)/2 and

[xv]f(v) = 1/2. Hence [xv]φ = (t − 1)/2− (t − 3)/2 = 1.
2. [1]φ: We note that [1](

�
e∈E(Kt)

we) is equal to 1/2 times the number

of edges in Kt. The number of edges in the clique is t(t − 1)/2.
Moreover, we observe that [1]f(v) = −1/4. Hence [1]φ = −(t2 −
t)/4 + t(t − 3)/4 + t/2− 1 = −1.
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Lemma 5.2.3.
Let IAW be an (n, t)-antiweb inequality with AW as its support graph.
Then IAW :

�
v∈V (AW) xv ≤ �n/t� can be rewritten as

−
�

e∈E(AW)

we − (2t − 4)
�

v∈V (AW)

f(v) +
n

2
−
�n

t

�
≤ 0.(IAW)

Proof. It is enough to prove this for AW being simple. The nonsimple
part follows immediately from the simple case. We consider the coefficient
of each term. Consider the multivariable function

φ = −
�

e∈E(AW)

we − (2t − 4)
�

v∈V (AW)

f(v) +
n

2
−
�n

t

�
.

1. [xv]φ where v ∈ V (AW): Then follows [xv](
�

e∈E(AW) we) = −(2t−
2)/2 and [xv]f(v) = 1/2. Hence [xv]φ = (2t − 2)/2− (2t − 4)/2 = 1.

2. [1]φ: We note that [1](
�

e∈E(AW) we) is equal to 1/2 times the

number of edges in AW. The number of edges in the antiweb
is n(t − 1). Moreover, we observe that [1]f(v) = −1/4. Hence
[1]φ = −(nt − n)/2 + n(2t − 4)/4 + n/2 − �n/t� = −�n/t�.

5.3. Finding a Minimum-Weight (t)-Antiweb

In this section, we give a polynomial time algorithm for finding a mini-
mum weight (t)-antiweb (possibly degenerate) in a given graph and apply
it to the problem of (t)-antiweb separation. In contrast to this we show in
Section 5.4 that recognizing an antiweb in a graph is ��-complete; thereby
separation of antiwebs is ��-hard.
The minimum weight (t)-antiweb algorithm is used as a subroutine by

all other separation algorithms in this chapter. We note that the graph in
Minimum-Weight-t-Antiweb (defined below) might have loops. This is
not an inconsistency as the graph in Minimum-Weight-t-Antiweb may
not be the one in which we want to find a stable set. It is just a graph
in which we are looking for a minimum weight configuration. Because
this graph may have loops, it may contain degenerate cliques, that is, a
complete graph with loops at some of its vertices. For example, the graph
with two vertices a and b with edge {a, b} and a loop at a can be considered
a degenerate 3-clique, and a loop at a vertex can be considered a degenerate
t-clique for any t ≥ 2. It may also contain degenerate antiwebs. An ordered
t-clique is a clique on v1, v2, . . . , vt (not necessarily distinct) in which the
order of the vertices is important.
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Minimum-Weight-t-Antiweb.

Instance: Numbers 1 ≤ q ≤ t − 1, r ≥ 2t − 1, a graph G =
(V, E) (possibly with loops), and for each ordered
t-clique T (possibly degenerate), a nonnegative
weight wG(T ).

Output: A t-antiweb (possibly degenerate) with minimum
weight among all (n, t)-antiwebs with n ≡ q mod t
and n ≥ r. Here the weight of an (n, t)-antiweb
is the sum of the weights of its generators, each
ordered naturally

We note that by “naturally” we mean the weight of AW(v1, v2, . . . , vn)
is the weight of the following ordered t-cliques: (v1, v2, . . . , vt), (v2, v3, . . . ,
vt+1), . . . , (vn, v1, . . . , vt−1). For example, for the clique with vertices
v1, v2, . . . , vt, we must use the weight for the ordered t-clique (v1, v2, . . . , vt)
and not (v2, . . . , vt, v1). (In the special case that t = 2, q = 1 and r = 3,
Problem Minimum-Weight-t-Antiweb is the task of finding a minimum-
weight odd closed walk, for which the solution is well-known, see [GLS93].)
Next we construct a directed graph D from G. The vertex-set VD of D is
constructed as follows: There is a vertex in VD for every ordered t-clique
T (possibly degenerate), with ordering (u1, u2, . . . , ut), in G. Notice that
for a fixed t, |VD| = O(|V |t) holds. The arcs in D are constructed as
follows: there is an arc from (u1, u2, . . . , ut) to (v1, v2, . . . , vt) if and only
if ui = vi−1 for i = 2, 3, . . . , t; moreover, the weight on this arc is the
weight of the ordered t-clique T (u1, u2, . . . , ut). Let AW(v1, v2, . . . , vn)
be an (n, t)-antiweb (possibly degenerate) in G. Construct the following
directed closed walk C of length n in D:

(v1, v2, . . . , vt)→ (v2, v3, . . . , vt+1)→ · · · → (vn, v1, . . . , vt−1)

→ (v1, v2, . . . , vt).

Now it follows from construction that wG(AW) = wD(C). Conversely,
given a directed closed walk

(u1, u2, . . . , ut)→ (u2, u3, . . . , ut+1)→ · · · → (un, u1, . . . , ut−1)

→ (u1, u2, . . . , ut)

of length n in D, then by construction, (ui, ui+1, . . . , ui+t−1) gives an
ordered t-clique (possibly degenerate) in G where 1 ≤ i ≤ n; let this be
Ti. Then T1, T2, . . . , Tn generate an (n, t)-antiweb AW with wG(AW) =
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wD(C). Moreover, this AW is, in fact, a subgraph of G. In particular, if
G has no loops, then AW can be nonsimple but not degenerate. Hence
problemMinimum-Weight-t-Antiweb is equivalent to finding a minimum
weight directed closed walk of length n in D with n ≡ q (mod t) and
n ≥ r. This is just a Remainder-Restricted-All-Pairs-Shortest-
Walk problem, which can be solved in polynomial time, see Theorem 2.4.1
in Subsection 2.4.3. This gives the following result.

Theorem 5.3.1.
Minimum-Weight-t-Antiweb can be solved in polynomial time.

If t = 2 then the problem is only to find an odd cycle so in this case we can
avoid the detour via the directed graph D and instead apply Remainder-
Restricted-All-Pairs-Shortest-Walk directly. This corresponds to
the algorithm given in [GLS93].
Let QtSTAB(G) = {x ∈ ESTAB(G) : x fulfills all clique inequalities for

cliques of size at most t}. Theorem 5.3.1 will be used to solve various sep-
aration problems. First we apply it to the (t)-antiweb inequalities.

Theorem 5.3.2.
Let t ≥ 2 be fixed. The class of (t)-antiweb inequalities can be separated
with respect to QtSTAB(G) in polynomial time.

Proof. Because t is fixed, the class of trivial inequalities and clique
inequalities of size t can be separated in polynomial time. Suppose x∗

belongs to QtSTAB(G) where G is a simple graph. Because t is fixed, it
is enough to give a method to separate all the (n, t)-antiweb inequalities
with n ≡ q (mod t) for a fixed q where 1 ≤ q ≤ t−1 and n ≥ 2t−1. Recall
that the (n, t)-antiweb inequality for AW can be written as

−
�

e∈E(AW)

we − (2t − 4)
�

v∈V (AW)

f(v) +
�n

2
−
�n

t

��
≤ 0.

Now we assign to each ordered t-clique T (u1, u2, . . . , ut) in G (such clique
is not degenerate as G has no loops, but it may be nonsimple) the weight

1

t

�
� �

1≤j<i≤t

w∗
ui,uj

+ (t − 3)
t�

i=1

f∗(ui)−
1

2
t+ 1

�
� .

It is nonnegative because the term is just a multiple of a Kt-inequality and
x∗ satisfies all of them. By definition, wui,uj + f(ui) + f(uj) = 0. Hence
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this weight can be rewritten as

�

1≤j<i≤t

�
1

t − (i − j)

�
w∗

ui,uj
+

t − 3
t

t�
i=1

f∗(ui)

+
�

1≤j<i≤t

�
1

t − (i − j)
− 1

t

�
(f∗(ui) + f∗(uj))− 1

2
+
1

t
.

Suppose that ordered t-tuples, (u1
1, u

1
2, . . . , u

1
t ), (u

2
1, u

2
2, . . . , u

2
t ), . . . , (u

n
1 , un

2 ,
. . . , un

t ) are given such that ui
j+1 = ui+1

j for i = 1, 2, . . . , n − 1 and j =

1, 2, . . . , t − 1, and un
j = u1

j+1 for j = 1, 2, . . . , t − 1. The ordered t-
cliques corresponding to these n ordered t-tuples form the (n, t)-antiweb
AW(v1, v2, . . . , vn). Moreover, the total weight of them is�

e∈E(AW)

w∗
e + (2t − 4)

�
v∈V (AW)

f∗(v) +
n

t
− n

2
.

Note that this is almost (except for the constant term) the left hand
side of an antiweb inequality as written in Lemma 5.2.3. To see this, we
first observe that we only have to prove the claim in which the resulting
(n, t)-antiweb is simple; the nonsimple case follows immediately (by using
Lemma 5.2.1). Consider:
1. Terms involving w∗: Consider vi and vj , with j < i, where {vi, vj}
is a k-edge in the generated (n, t)-antiweb. Then w∗

vi,vj
appears in

(t − k) of the t-tuples; this gives w∗
vi,vj

for the total contribution as
k = i − j.

2. Terms involving f∗: Let 1 ≤ k ≤ n. Then vk appears in exactly t
of the n given t-tuples. Moreover, it appears as the j-th entry of a
t-tuple exactly once for every 1 ≤ j ≤ t. Hence the total contribution
is (by utilizing

�
1≤j<i≤t

1
t−(i−j)

= t − 1)
�
� t − 3

t

t�
i=1

1 + 2
�

1≤j<i≤t

�
1

t − (i − j)
− 1

t

��� f∗(vi) = (2t − 4)f∗(vi).

3. The rest of the terms: Because the “constant term” in each of the n
given t-tuples is − 1

2
+ 1

t
the total contribution is −n

2
+ n

t
.

We apply Theorem 5.3.1 for each 1 ≤ q ≤ t − 1 with r = 2t − 1 to
find a minimum-weight (t)-antiweb in G and its weight. This value is less
than the constant

�
n
t
−
	

n
t


�
= q

t
whenever there is a violated (t)-antiweb

inequality. We note that we do not have to worry about such a (t)-antiweb
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faithful antiwebs

simple antiwebs

nonsimple antiwebs

Figure 5.2. Relation among the different generaliza-
tions of antiwebs.

being degenerate as G has no loops. However, it may be a nonsimple (t)-
antiweb. Moreover, this minimum-weight (t)-antiweb gives a most-violated
inequality for the corresponding q. (We note that as an antiweb produced
by this algorithm may be nonsimple, the inclusion of nonsimple antiweb
inequalities is crucial for the validity of our separation algorithm.)

5.4. Intractability of Separation and Recognition

After we settled the polynomial time separability of the (t)-antiweb
inequalities in Section 5.3 one might wonder why we did not aim at the
separation of antiwebs in general but considered only the (t)-antiwebs.
The reason for this—proved in the current section—is that the general
separation problem for antiweb inequalities is ��-hard.

Definition 5.4.1 (Faithful Antiweb).
A nonsimple (n, t)-antiweb AW(v1, v2, . . . , vn) is faithful if vi 
= vi+j for
all indices i = 1, 2, . . . , n and 0 < j ≤ t.

Figure 5.2 shows the relation between the different generalizations of
antiwebs. Now we can present the four corresponding separation and
recognition problems.

simple-Antiweb-Recognition.

Instance: A graph G and numbers J, r ∈ �.
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Output: A simple (n, J)-antiweb with n ≡ r mod J con-
tained in G or if there is no such simple (n, J)-
antiweb the answer no.

faithful-Antiweb-Recognition.

Instance: A graph G and numbers J, r ∈ �.

Output: A faithful (n, J)-antiweb with n ≡ r mod J con-
tained in G or if there is no such faithful (n, J)-
antiweb the answer no.

simple-Antiweb-Separation.

Instance: A graph G, x∗ ∈ ESTAB(G), and numbers J, r ∈
�.

Output: A simple (n, J)-antiweb inequality that is violated
by x∗, with n ≡ r mod J or if no such inequality
exists the answer no.

faitful-Antiweb-Separation.

Instance: A graph G, x∗ ∈ ESTAB(G), and numbers J, r ∈
�.

Output: A faithful (n, J)-antiweb inequality that is vio-
lated by x∗, with n ≡ r mod J or if no such in-
equality exists the answer no.

We will start the complexity study by constructing a problem equivalent
to the recognition problems. Notice that in the definition of arcs in Gt in
the next theorem we use only those arcs of the digraph D (from the proof
of Theorem 5.3.1) that fulfill additionally c1 
= dt.

Theorem 5.4.2.
Given a graph G(V, E) define the digraph Gt(Vt, Et), with

Vt = {(c1, c2, . . . , ct) : {c1, c2, . . . , ct} is a t-clique in G}
and a pair ((c1, c2, . . . , ct), (d1, d2, . . . , dt)) forms an arc of Gt if (c2, . . . , ct)
= (d1, . . . , dt−1) and c1 
= dt, The graph G(V, E) contains a faithful (n, t)-
antiweb if and only if Gt(Vt, Et) contains a directed n-circuit. Similar, if a
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graph G(V, E) contains a simple (n, t)-antiweb then the digraph Gt(Vt, Et)
contains a directed n-circuit.

Proof. Clearly, if G contains a faithful (n, t)-antiweb with spine
(v1, v2, . . . , vn), then follows that the tuples (vi, . . . , vi+t−1) belong to Vt

for all i and that there are arcs ((vi, . . . , vi+t−1), (vi+1, . . . , vi+t)) for all i.
Hence Gt contains a directed n-circuit.
If on the other hand Gt contains a directed n-circuit

((v1, . . . , vt), (v2, . . . , vt+1), . . . , (vn−1, vn, . . . , vt−2), (vn, v1 . . . , vt−1))

then the sequence (v1, v2, . . . , vn) is the spine of a faithful (n, t)-antiweb in
G.

Theorem 5.4.3.
For every vertex of Gt of an (n, t)-antiweb the in- and outdegree coincide
and are 0 or 1.

Proof. Consider a vertex (w2, . . . , wt+1) of Gt. Suppose, that the
indegree of this vertex is at least two. Then two different vertices
(w′

1, w2, . . . , wt) and (w′′
1 , w2, . . . , wt) exist in Gt. Because all three se-

quences are vertices of Gt we know that their underlying sets form t-
cliques of AW(n, t). Furthermore, wt+1, w

′
1, w

′′
1 are adjacent in G to all

vertices in {w2, w3, . . . , wt}. But we know that in G only two such vertices
v1, vt+1 are adjacent to {w2, w3, . . . , wt}. The condition, that (w′

1, . . . , wt)
and (w′′

1 , . . . , wt) are predecessors of (w2, . . . , wt+1) in Gt ensures that
w′

1, w
′′
1 
= wt+1. Hence w′

1 = w′′
1 , contradicting the assumption.

The case of the outdegree can be handled by applying a similar reasoning
to the (isomorphic) image of Gt under the map vi 
→ vn+1−i.
The fact that (w2, . . . , wt+1) has indegree 1 establishes the existence

of a predecessor (w1, . . . , wt) in Gt. This together shows, that there
is a clique (vi, . . . , vi+t−1) (or (vi+t−1, vi+t−2, . . . , vi)) in G, underlying
(w2, . . . , wt+1). This shows that there is another arc in Gt from (w2, . . . ,
wt+1) to (w3, . . . , wt+1, vi+t) (or (w3, . . . , wt+1, v0)). So the outdegree is
also at least 1.

Theorem 5.4.4.
The graph Gt of a simple (n, t)-antiweb G contains two disjoint directed n
cycles and (t!− 2) ∗ n isolated vertices.
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Proof. The two disjoint cycles stem from G. The number of vertices
is also clearly t!n. (As there are n cliques of size t in G and there are t!
different ways to order them.) It remains to show that there are no other
edges.
Notice that every edge corresponds to an ordering T of a (t − 1)-clique

of G and two different vertices v, w of G \ T so that (v, T ) and (T, w) are
vertices of Gt (as the underlying sets are t-cliques of G). Now we distinguish
two cases depending on whether the underlying sets of (v, T ) and (T, w)
are different or if they are equal.
If they are different then T is a (t − 1)-clique contained in two different

t-cliques. But this is only possible if the vertices in T are ordered like an
interval on the rim of G. Furthermore, v and w have to be adjacent (on
the rim) to different ends of T. Hence the arc belongs to one of the two
dicycles.
If the underlying sets are equal, this requires v = w. But this is impos-

sible for an edge. So all arcs of Gt belong to one of the two n-dicycles.

A simple consequence is that no simple (n, t)-antiweb contains another
(n′, t)-antiweb with n′ < n. But a simple (n, t)-antiweb contains for all
k ≥ 1 nonsimple (kn, t)-antiwebs.
We shall start the intractability results by proving that simple-Anti-

web-Recognition and faithful-Antiweb-Recognition are ��-hard.
This will then be used to prove that simple-Antiweb-Separation and
faitful-Antiweb-Separation are ��-hard.

Theorem 5.4.5.
The problems simple-Antiweb-Recognition and faithful-Antiweb-
Recognition are ��-hard.

Proof. Obviously, both recognition problems belong to ��, as it is a
simple task to check, whether a given sequence of vertices constitutes the
spine of a faithful antiweb or not.
We will show ��-hardness for the recognition problems by reducing the

Clique-problem, see Section 2.2, to them. The Clique-problem is ��-
complete [Kar72]. Given an instance (G, J) of the clique problem we will
construct a graph G′ and a number J ′ (= J+1) so that the clique problem
can be solved by solving the instance (G′, J ′, r) of simple-Antiweb-Rec-
ognition.
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For G′ we start with a (3J ′+r+2, J ′)-antiweb, remove all edges between
neighbors of a given vertex v, which are on ‘different’ sides of v, delete the
vertex v and make all neighbors of v adjacent to all vertices in G; we call
the new graph G′. By ‘neighbors of v on different sides of v’ we mean
neighbors of v so that the shortest path between them that uses only rim-
edges contains v (that is neighbors u, w of v with dist(u, v) + dist(v, w) =
dist(u, w)). There are two reasons for the choice of the number 3J ′+r+2:
1. We remove one vertex and hope then for a J ′ − 1 clique to fill the
gap, this makes a total change of J ′ − 2; so the size of the antiweb
becomes 3J ′ + r + 2 + J ′ − 2 and this is congruent to r mod J ′.

2. The coefficient 3 in 3J ′+ ... is important to ensure that the notion of
different sides behaves properly.

Now, if G′ contains an (n, J ′)-antiweb with n ≡ r mod J ′, this antiweb
either does not make use of the antiweb we started with, which means that
G surely contains a J ′-clique (and hence a J-clique); or the discovered
antiweb uses the constituents of the old antiweb (which is no longer an
antiweb in G′ due to the removed vertex) plus J vertices of G which form
a J-clique.
To see the assertion, note the following. Suppose G contains no J-clique,

but G′ contains an antiweb; now have a look at GJ′(G). From the antiweb
we started with, we know of two dipaths in GJ′ . By the assumption that
G contains no cliques larger then J − 1 we know that all new nodes in GJ′

have to contain two vertices from the AW.
Case 1: If there were a new path in G connecting the two ends of the
old path then there has to be a vertex W in G containing the two
immediate neighbors of v in the old antiweb plus J − 1 vertices from
G. But the two neighbors are not connected, soW cannot be a clique.
Contradiction!

Case 2: If there were a new path in G connecting the head of the one old
path with the tail of the other old path there has to be a vertex W in
G containing an immediate neighbor of v in the old antiweb twice plus
J − 1 vertices from G. But this is again impossible. Contradiction!

For the opposite direction notice, that if G contains a J-clique, then G′

contains a J ′-antiweb.
Notice, that we required nowhere the involved antiweb to be simple, so

our proof is independent of the distinction simple versus faithful.



5.5. Antiweb-1-Wheel Inequalities 121

Theorem 5.4.6.
The problems simple-Antiweb-Separation and faitful-Antiweb-Sep-
aration are ��-hard.

Proof. Given an instance (G, J, r) of of the Antiweb-Recognition
problem we construct an LP-solution x̂ ∈ ESTAB(G) (actually, x̂ ∈
QJSTAB(G)) by setting all components to

1
J
. Clearly, this vector belongs

to ESTAB(G) (for |J | ≥ 2).
If the corresponding Antiweb-Separation finds for (G, x̂, J, r) a vio-

lated (n, t)-antiweb inequality with n ≡ r mod J we are happy. If by con-
trast G contains a faithful/simple (n, t)-antiweb with n ≡ r mod J , then
it is easy to see, that x̂ violates the corresponding generalized antiweb
inequality.

5.5. Antiweb-1-Wheel Inequalities

Given a graph G(V, E) and a vertex v0 /∈ V , we define the graph Gv0 on
the vertex set V ∪ {v0} and edge set E ∪ {{u, v0} : u ∈ V }.

Definition 5.5.1 (simple antiweb-1-wheel).
Given an (n, t)-antiweb G1 = (V1, E1) with vertex set V1 = {v1, v2, . . . , vn}.
Partition V1 into E and O. Consider a subdivision G of Gv0

1 . Let P0,i de-
note the path obtained from subdividing the edge {v0, vi} (called a spoke),
and let Pi,j (for vi, vj adjacent in G1) denote the path obtained from sub-
dividing the edge {vi, vj}. This resulting graph AWW is a simple antiweb-
1-wheel if it satisfies the following conditions:

1. The length of P0,i is even for i ∈ E and odd for i ∈ O;
2. the length of the path Pi,j is even for i ∈ E and j ∈ O or j ∈ E and

i ∈ O;
3. the length of the path Pi,j is odd for i, j ∈ O; and
4. the length of the path Pi,j is odd for i, j ∈ E .

Moreover let S(AWW), or simply S, be the set of internal vertices of P0,i

for i = 1, 2, . . . , n, and R(AWW), or simply R, be the set of internal
vertices of all the Pi,j ’s for all i, j ∈ {1, 2, . . . , n}. The vertex v0 is the hub
of the antiweb-1-wheel, and the vertices in E ∪ O are the spoke-ends.

See Figure 5.3(a) for a simple antiweb-1-wheel and Figure 5.3(b) for a
nonsimple antiweb-1-wheel. Figure 5.4 depicts a simple antiweb-1-wheel
with nontrivial partition E ∪O. The next theorem gives a class of valid in-
equalities whose support graphs are antiweb-1-wheels. For t = 2 the simple
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Figure 5.3. (a) shows a simple (8, 3)-antiweb-1-wheel,
where no edge is subdivided and all vertices (on the rim)
belong to O; (b) shows the nonsimple antiweb-1-wheel
resulting from identifying vertices v1 and v5 in (a).

v6 v4

v8

v5

v3v0v7

v2

v1

Figure 5.4. Picture of a simple (8, 3)-antiweb with E =
{v1, v6, v8} and O = {v2, v3, v4, v5, v7}.

(n, t)-antiweb-1-wheels and the inequalities given in the next theorem are
just the 1-wheels and IE given in [CC97].

Theorem 5.5.2 (simple (n, t)-antiweb-1-wheel valid inequality).
Let AWW be an (n, t)-antiweb-1-wheel. Then the following inequality is
valid for STAB(AWW):

(IAWW)
�n

t

�
x0 +

�
i∈O

xi + (2t − 2)
�
i∈E

xi +
�

i∈S∪R
xi

≤
�n

t

�
+

|S|+ |R|+ |E|
2

+ (t − 2)|E|.
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The class of (·, t)-antiweb-1-wheels is referred to as (t)-antiweb-1-wheels
and their corresponding inequalities are the (t)-antiweb-1-wheel inequali-
ties. For the proof of validity, we need some intermediate results. Note
that we purposely write Kt+1 as Kv0

t in the next definition, and that Kv0
3

is a 1-wheel in the sense of [CC97].

Definition 5.5.3 (odd subdivision of (t ⊕ 1)-clique).
Given t > 2, a t-clique Kt with vertex set V = {v1, v2, . . . , vt} and a
partition E ,O of V . Consider a subdivision G of Kv0

t . Let P0,i denote
the path obtained from subdividing the edge {v0, vi} and let Pi,j (for vi, vj

adjacent in G1) denote the path obtained from subdividing the edge {vi, vj}.
This graph G is an odd subdivision of (t ⊕ 1)-clique if all of the following
four conditions hold:

1. the length of P0,i is even for i ∈ E and odd for i ∈ O,
2. the length of the path Pi,j is even for i ∈ E and j ∈ O or j ∈ E and

i ∈ O,
3. the length of the path Pi,j is odd for i, j ∈ O, and
4. the length of the path Pi,j is odd for i, j ∈ E .

Moreover, the internal vertices on the P0,i’s give the set S and the internal
vertices on the Pi,j ’s give the set R.

Lemma 5.5.4 ((t ⊕ 1)-clique inequality).
Given an odd subdivision of the (t ⊕ 1)-clique Kv0

t . Then the following
inequality is valid

(It⊕1) x0 + (t − 1)
�

i∈E
xi +
�

i∈O
xi +
�

v∈S∪R
xv

≤ 1 +
|S|+ |R|+ (t − 2)|E|

2
.

Proof. Notice, that It⊕1 reduces for t = 2 to an odd cycle inequality. So
suppose now, that the validity of It′⊕1 is proved for all t

′ < t. Now consider
G—an odd Kt⊕1. Notice that this graph contains t different K(t−1)⊕1’s
constructed by removing one spoke-end with all its incident paths. First
we add up the I(t−1)⊕1 inequalities for this subconfigurations and obtain:

tx0 + (t − 1)(t − 2)
�

i∈E
xi + (t − 1)

�

i∈O
xi + (t − 1)

�

v∈S
xv

+ (t − 2)
�

v∈R
xv ≤ t+

(t − 1)|S|+ (t − 2)|R| + (t − 1)(t − 3)|E|
2

.
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For each path P arising from an edge of the Kt, we construct A(P ) as
follows (by looking at three cases): Let y and z be the spoke-ends of the
path.

• Suppose y, z ∈ E . If the path is (y, u1, u2, . . . , u2l, z), where l ≥ 0, we
add the following edges to A(P ): {y, u1}, {u2, u3}, . . . , {u2l−2, u2l−1},
{u2l, z}.

• Suppose y, z ∈ O. If the path is (y, u1, u2, . . . , u2l, z), where l ≥ 0, we
add the following edges to A(P ): {u1, u2}, {u3, u4}, . . . , {u2l−1, u2l}.

• Suppose y ∈ E ,z ∈ O. If the path is (y, u1, u2, . . . , u2l+1, z), where
l ≥ 0, we add the edges {y, u1}, {u2, u3}, . . . , {u2l, u2l+1} to A(P ).

Now we add for all e ∈ A the edge inequalities and obtain

tx0 + ((t − 1)((t − 2) + 1))
�

i∈E
xi

+ (t − 1)
�

i∈O
xi + (t − 1)

�

v∈S
xv + (t − 1)

�

v∈R
xv

≤ t+
(t − 1)|S|+ (t − 2)|R|+ (t − 1)(t − 3)|E|

2
+
(t − 1)|E|+ |R|

2
.

Now divide everything by t − 1
t

t − 1x0 + (t − 1)
�

i∈E
xi +
�

i∈O
xi +
�

v∈S
xv + 1

�

v∈R
xv

≤ t

t − 1 +
|S|+ |R|+ (t − 2)|E|

2
.

Notice that |S| + |R| + (t − 2)|E| is always even. Finally round first the
coefficient of x0 down and then the constant on the right hand side. This
results in the inequality that needed to be proved.

For t = 2 the preceding inequality is a cycle inequality and for t = 3 it
is a IE , given in [CC97].

Lemma 5.5.5.
Given a simple antiweb-1-wheel. Then |S|+ |R|+ |E| is even.

Proof. By the definition of E , |S| + |E| is even. Now consider a path
Pi,j corresponding to a cross-edge. If both ends are in O, then the number
of internal vertices of Pi,j is even. If both ends are in E , then the number
of internal vertices of Pi,j is even. If exactly one end of Pi,j is in E , then
the number of internal vertices of Pi,j is odd, and hence the number of
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internal vertices of Pi,j + 1 is even. Hence |R| + b is even where b is the
number of Pi,j ’s with exactly one end in E . Consider |R| + 2(t − 1)|E|.
Note that 2(t − 1) is the number of Pi,j an element of E is on. We now
observe that 2(t − 1)|E| = 2a+ b where a is the the number of Pi,j ’s with
both ends in E . Hence b is even. This implies |R| is even.

We are now ready to prove Theorem 5.5.2.

Proof of Theorem 5.5.2. Given a simple antiweb-1-wheel, consider
the subconfiguration (for a fixed i) generated by the paths P0,i+1,
P0,i+2, . . . , P0,i+t and Pi+j,i+k for 1 ≤ j, k,≤ t and j 
= k. This is an odd
subdivision of Kv0

t . We have n of these subconfigurations, one for each
i = 1, 2, . . . , n. Adding up the inequalities of the form in Lemma 5.5.4 for
each of these subconfigurations gives

nx0 + t(t − 1)
�

v∈E
xv + t

�

v∈O
xv + t
�

v∈S
xv +

t−1�

i=1

(t − i)
�

v∈Ri

xv

≤ n+ t
|S|
2
+

t−1�

i=1

(t − i)
|Ri|
2

+
t(t − 2)
2

|E|

where Ri is the set of internal vertices of paths corresponding to the cross-
edges of type i. For each path P arising from a cross-edge of type i define
A as in the proof of Lemma 5.5.4 and add i times the edge inequality
xu + xv ≤ 1 for every {u, v} ∈ Ai(P ) thus obtaining

nx0+

�
t(t − 1) + 2

t−1�
i=1

i

��
i∈E

xi+t
�
i∈O

xi+t
�
v∈S

xv+

t−1�
i=1

(t−i+i)
�

v∈Ri

xv

≤ n+ t
|S|
2
+

t−1�
i=1

(t − i+ i)
|Ri|
2

+
t(t − 2)
2

|E|+ 2
�

t−1�
i=1

i

�
|E|
2

.

This simplifies to

nx0 + 2t(t − 1)
�
i∈E

xi + t
�
i∈O

xi + t
�

v∈S∪R
xv

≤ n+ t
|S|+ |R|+ |E|

2
+ t(t − 2)|E|.
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Dividing the inequality by t and rounding down (the term |S|+ |R| + |E|
is even by Lemma 5.5.5) gives the desired inequality,

�n

t

�
x0 + 2(t − 1)

�
i∈E

xi +
�
i∈O

xi +
�

v∈S∪R
xv

≤
�n

t

�
+

|S|+ |R|+ |E|
2

+ (t − 2)|E|.

We note that we can extend all these inequalities to include the inequal-
ities for the corresponding nonsimple configurations by Lemma 5.2.1. As
before, such inclusion is crucial for our separation algorithms. Of course
for a nonsimple antiweb-1-wheel inequality, sets such as S , R and E are
multisets using the same rule as before.

5.6. Separation Algorithms

Let t ≥ 2. We separate (t)-antiweb-1-wheel inequalities. (The case t = 2
is given in [CC97].) We need to rewrite the inequality in Lemma 5.5.4 in
terms of the we’s. We use the notation

f(v) =

�
1/4− xv/2 if v ∈ E
−1/4 + xv/2 if v ∈ O

for v ∈ E ∪ O. This f is an extension of the definition of f we gave
earlier (where for antiwebs every vertex corresponds to a vertex in O as its
coefficient is 1). Again, we use f∗ to denote f when x is replaced by x∗.
From now on, we assume x∗ satisfies the trivial, edge and cycle inequalities.

Lemma 5.6.1.
For every path Pa,b arising from an i-edge of an antiweb holds

2
�

e∈Ai(Pa,b)

we =
�

e∈Pa,b

we + f(va) + f(vb).

Proof. This follows from the definitions of we and Ai(Pa,b).

Using w(P ) =
�

e∈P we we obtain the following path-representation of
It⊕1.
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Lemma 5.6.2.
A (t ⊕ 1)-clique inequality can be rewritten as

It⊕1 : −
�

P∈P(S)

w(P )−
�

P∈P(R)

w(P )− (t − 2)
�

v∈E∪O
f(v)

+

�
3t

4
− 1
�
− t − 2

2
x0 ≤ 0

where P(S) is the set of paths obtained by replacing the edges of the form
(v0, v) where v ∈ V (Kt), and P(R) is the set of paths obtained by replacing
the edges of the form (u, v) where u, v ∈ V (Kt). Moreover, for fixed t the
(t ⊕ 1)-clique inequalities can be separated with respect to CSTAB(G) in
polynomial time.

Again, the term (t⊕1)-clique inequality in Lemma 5.6.2 refers to simple
and nonsimple instances. As before, the inequality should be interpreted
in the usual way for nonsimple configurations: The number of times we

appears is according to the number of roles it takes as multiple edges are
deleted.

Proof of Lemma 5.6.2. The part of the theorem about the represen-
tation is simply done by comparing the corresponding terms in the two
representations. Consider the multivariable function

φ = −
�

P∈P(S)

w(P )−
�

P∈P(R)

w(P )− (t − 2)
�

v∈E∪O
f(v)

+

�
3t

4
− 1
�
− t − 2

2
x0

and compare the coefficients of the terms.

1. [x0]φ: As only the first and last coefficient contribute, we obtain
t/2− (t − 2)/2 = 1.

2. [xv]φ where v is an internal vertex in P ∈ P(S) ∪ P(R): As the
degree of xv is two and xv appears in either −�P∈P(S) w(P ) or

−�P∈P(R) w(P ) only, [xv]φ = 1/2 + 1/2 = 1.

3. [xv]φ where v ∈ E : Then we obtain [xv](−
�

P∈P(S) w(P )) = 1/2,

[xv](
�

P∈P(R) w(P )) = (t−1)/2 and [xv]f(v) = −1/2. Hence [xv]φ =

1/2 + (t − 1)/2 + (t − 2)/2 = t − 1.
4. [xv]φ where v ∈ O: The terms are the same as in the last case just
the last sign is opposite so that we obtain [xv]φ =

1
2
+ t−1

2
− t−2

2
= 1.
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5. [1]φ: Notice that the first term of φ contributes−(t+|S|)/2 the second
term −(2|R|+ t(t− 1))/4 the third term −(|E| − |O|) ∗ (t− 2)/4 and
the fourth term contributes −1 + 3t/4. Adding them up and using
|O| = t − |E| yields the desired −1− (|S|+ |R|+ (t − 2)|E|)/2.

The first part implies the following: If Kv0
t determines such an inequality

that is most-violated by x∗, then every path in P(S)∪P(R) is a minimum-
weight walk with respect to w∗ of its parity joining its ends. We need a
method of separating these inequalities (both simple and nonsimple) for
a fixed t. We compute, for each u, v ∈ V , the minimum weight with
respect to w∗ of an even (odd) walk from u to v in G (u and v may be
the same). We denote this minimum by w∗

E(u, v) (w∗
O(u, v)). To solve

our problem for It⊕1, it is enough to find an algorithm for finding a most-
violated inequality of the form It⊕1 with some specific vertex, say v0, as
the hub. We construct an auxiliary graph H = (VH , EH) from G = (V, E)
as follows: H is a complete graph with loops where VH = V E ∪ V O, and
V E and V O are copies of V . If a ∈ V E (V O) is a copy of b ∈ V , then b is
denoted by αa. A vertex in V E represents a potential even spoke-end and
a vertex in V O represents a potential odd spoke-end. We first define the
following: Given u, v ∈ VH , we set

w+(u, v) =

�
w∗

O(αu, αv) if u, v belong to the same set of V E and V O ,

w∗
E(αu, αv) if u, v belong to different sets of V E and V O;

and f+(u) = f∗(αu). Additionally, we need a way to describe the distance
of an even or odd path from the hub v0 to another vertex u. Of course,
w∗

E(v0, u) and w∗
O(v0, u) describe this in G. A neat way to describe it in H

is to notice that w+(vO
0 , u) is equal to w∗

E(v0, αu) if u ∈ V E (as vO
0 and u

belong to different sets of E and O) and w∗
O(v0, αu) if u ∈ V O.

We let the weight on the edge {u, v} be

w+(u, v) +
1

t − 1w+(vO
0 , u) +

1

t − 1w+(vO
0 , v)

+
t − 2
t − 1 (f

+(u) + f+(v))− 1

2(t − 1) .

This is nonnegative because it can be rewritten as
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1

t − 1

�
w+(u, v) + w+(vO

0 , u) +w+(vO
0 , v)− 1

2

�

+
t − 2
t − 1(w

+(u, v) + f+(u) + f+(v)).

For the first term to be nonnegative it suffices to show that x∗ fulfills
the corresponding odd cycle inequality, and this is fulfilled by assumption.
The second line is nonnegative by Lemma 5.6.1. Now consider a (possibly
nonsimple) Kt in H . (We note that a Kt−1 with a loop at a vertex is a
nonsimple Kt.) The weight of this Kt is�

P∈P(S)

w+(P ) +
�

P∈P(R)

w+(P ) + (t − 2)
�

v∈E∪O
f+(v)− t

4
.

So we find the weight of a minimum-weight nonsimple Kt and there is a
violated odd-clique inequality if and only if its value is less than t−2

2
(1 −

x∗
0) by the first part. As t is fixed, it suffices to inspect all O(|V |t) of
these t-tuples to decide whether x∗ violates any of the odd (t ⊕ 1)-clique
inequalities for a single, fixed hub; this gives a polynomial time separation
algorithm.

Lemma 5.6.2 implies that we may from now on assume that x∗ fulfills
all (t ⊕ 1)-clique inequalities. We denote with Q′

tSTAB(G) the set of all
x ∈ ESTAB(G) that fulfill all (t⊕1)-clique inequalities. We are now ready
to approach the antiweb-1-wheel separation itself. We first rewrite the
inequality of Theorem 5.5.2 into its path-representation.

Lemma 5.6.3.
An antiweb-1-wheel inequality IAWW can be written as

−
�

P∈P(S)

w(P )−
t−1�
i=1

�
P∈P(Ji)

w(P )− (2t − 3)
�

v∈E∪O
f(v)

−
�n

2
−
�n

t

��
x0 +

�
3

4
n −

�n

t

��
≤ 0

where P(S) and P(Ji) are the sets of paths derived from the spokes and
i-edges, respectively.

Proof. It is clear that we only have to prove this result for the case
where the antiweb-1-wheel is simple, the nonsimple case follows directly.
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Consider the multivariable function

φ = −
�

P∈P(S)

w(P )−
t−1�

i=1

�

P∈P(Ji)

w(P )− (2t − 3)
�

v∈E∪O
f(v)

−
�n

2
−
�n

t

��
x0 +

�
3

4
n −

�n

t

��

and compare the coefficients of the terms.

1. [x0]φ: We have [x0]φ = [x0](−
�

P∈P(S) w(P )) − (n/2 − �n/t�) =
n/2− n/2 + �n/t� = �n/t�.

2. [xv]φ where v is an internal vertex in P ∈ P(S) ∪ P(J1) ∪ · · · ∪
P(Jt): Because the degree of xv is two and xv appears in either

−�P∈P(S) w(P ) or −�t−1
i=1

�
P∈P(Ji)

w(P ) only, [xv]φ = 1/2 +

1/2 = 1.
3. [xv]φ where v ∈ E : Then we obtain [xv](−

�
P∈P(S) w(P )) = 1/2,

[xv](−
�t−1

i=1

�
P∈P(Ji)

w(P )) = (2t − 2)/2 and [xv]f(v) = −1/2.
Hence [xv]φ = 1/2 + (2t − 2)/2 + (2t − 3)/2 = 2t − 2.

4. [xv]φ where v ∈ O: Then we obtain [xv](−
�

P∈P(S) w(P )) = 1/2,

[xv](−
�t−1

i=1

�
P∈P(Ji)

w(P )) = (2t−2)/2 and [xv]f(v) = 1/2. Hence

[xv]φ = 1/2 + (2t − 2)/2 − (2t − 3)/2 = 1.
5. [1]φ: We note that [1](

�
P∈P(S) w(P ) +

�t−1
i=1

�
P∈P(Ji)

w(P )) is

equal to 1/2 times the number of edges in the antiweb-1-wheel. The
number of edges in the antiweb-1-wheel is n+ n(t − 1) + |S|+ |R| =
nt+ |S|+ |R|. Moreover, we observe that [1]f(v) = 1/4 if v ∈ E and
[1]f(v) = −1/4 if v ∈ O. Hence

[1]φ = −nt+ |S|+ |R|
2

− 2t − 3
4

|E|+ 2t − 3
4

|O|+ 3

4
n −

�n

t

�

= −
�n

t

�
− |S|+ |R|+ |E|

2
− (t − 2)|E|

as |O| = n − |E|.

Corollary 5.6.4.
Let W determine an inequality of the form IAWW that is most-violated by
x∗. Then every path in P(S)∪P(J1)∪P(J2)∪· · ·∪P(Jt−1) is a minimum-
weight walk with respect to w∗ of its parity joining its ends. In other words,
if P is such a (nonempty) walk, and P joins a to b, then for every nonempty
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walk Q from a to b having the same parity as P , the weight of Q is at least
the weight of P with respect to w∗.

Proof. With

F =
�

P∈P(S)

w(P ) +

t−1�

i=1

�

P∈P(Ji)

w(P ) + (2t − 3)
�

v∈E∪O
f(v)

+
�n

2
− n

t

�
x0 −

�
3

4
n − n

t

�

we rewrite IAWW as F ≥
�

n
t
−
�

n
t

��
(1− x0) (from Lemma 5.6.3).

Motivated by Corollary 5.6.4, we compute, for each u, v ∈ V , the mini-
mum weight with respect to w∗ of an even (odd) nonempty walk from u to
v in G (u and v may be the same). We denote this minimum by w∗

E(u, v)
and w∗

O(u, v). To solve the separation problem for IAWW , it is enough to
find an algorithm for finding a most-violated inequality of the form IAWW
with some specific vertex, say v0, as the hub. We construct an auxiliary
graph H = (VH , EH) from G = (V, E) as follows: H is a complete graph
with loops where VH = V E ∪ V O, and V E and V O are copies of V . If
a ∈ V E (V O) is a copy of b, then b is denoted by αa. A vertex in V E repre-
sents a potential even spoke-end and a vertex in V O represents a potential
odd spoke-end. Here, we will assign weights to ordered t-cliques rather
than edges. We first define the following: Given u, v ∈ VH , we set

w+(u, v) =

�
w∗

O(αu, αv) if u, v belong to the same set of V E and V O,

w∗
E(αu, αv) if u, v belong to different sets of V E and V O ;

for u ∈ VH , we set w+(v0, u) = w∗
E(v0, αu) if u ∈ V E and w+(v0, u) =

w∗
O(v0, αu) if u ∈ V O. Moreover, we let f+(u) = f∗(αu). For the ordered t-
clique (possibly degenerate) (u1, u2, . . . , ut), we assign the following weight
to it:

1

t

t	
i=1

w+(v0, ui) +
	

1≤j<i≤t

�
1

t − (i − j)

�
w+(ui, uj)−

3

4
+
1

t
+

t − 2
2t

x∗
0

+
t − 2

t

t	
i=1

f+(ui) +
	

1≤j<i≤t

�
1

t − (i − j)
− 1

t

��
f+(ui) + f+(uj)

�
.
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We claim that this weight is nonnegative. We rewrite it as

1

t

t�

i=1

w+(v0, ui)+
1

t

�

1≤j<i≤t

w+(ui, uj)−
3

4
+
1

t
+

t − 2
2t

x0+
t − 2

t

t�

i=1

f(ui)

+
�

1≤j<i≤t

�
1

t − (i − j)
− 1

t

�
(w∗(ui, uj) + f(ui) + f(uj)).

The first line is nonnegative as it is proportional to the form given in
Lemma 5.6.2 and as x∗ ∈ Q′

tSTAB(G) we know that x∗ satisfies (t ⊕ 1)-
clique inequalities. Each summand in the second line is nonnegative by
Lemma 5.6.1.
Suppose we have n ordered t-cliques, (u1

1, u
1
2, . . . , u

1
t ), (u

2
1, u

2
2, . . . , u

2
t ),

. . . , (un
1 , un

2 , . . . , un
t ), such that ui

j+1 = ui+1
j and ui

1 
= ui+1
t for i =

1, 2, . . . , n−1 and j = 1, 2, . . . , t−1, and un
j = u1

j+1 for j = 1, 2, . . . , t−1 and
un

t 
= u1
1. We note that these t-cliques generate a possibly degenerate (n, t)-

antiweb. Unlike the proof of Theorem 5.3.2, a degenerate (n, t)-antiweb
poses no problem as a loop induces a nonempty walk in the original graph.
However, they may induce a nonsimple (n, t)-antiweb-1-wheel in the orig-
inal graph. The total weight of these n ordered t-cliques is

�
P∈P(S)

w+(P ) +

t−1�
i=1

�
P∈P(Ji)

w+(P ) + (2t − 3)
�

v∈E∪O
f+(v)

+
�n

2
− n

t

�
x+

0 −
�
3

4
n − n

t

�
.

To see this, we first observe that we only have to prove the claim in
which the resulting (n, t)-antiweb is simple; the nonsimple case follows
immediately. We proceed as follow.

1. For a given ui, w
+(v0, ui) appears with weight

1
t
in each of the exactly

t of the n t-tuples; this gives w+(v0, ui) for the total contribution.
2. For a given ui and uj , with j < i, where (ui, uj) is a k-edge in the
generated (n, t)-antiweb. Then it appears in t−k of the t-tuples; this
gives w+(ui, uj) for the total contribution as k = i − j.

3. Let u ∈ E∪O. Then u appears in exactly t of the n t-tuples. Moreover,
it appears as the ith entry of a t-tuple exactly once for every 1 ≤ i ≤ t.
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Hence the total contribution is

�
� t − 2

t

t�
i=1

1 + 2
�

1≤j<i≤t

�
1

t − (i − j)
− 1

t

��
� f+(u) = (2t − 3)f+(u).

4. As x∗
0 appears with weight t−2/2t in each of the n t-tuples, this gives

(n/2− n/t)x∗
0 for the total contribution.

5. The constant term in each of the n t-tuples is −3/4 + 1/t hence the
total contribution is −3n/4 + n/t

Hence the claim is established.
This gives a violated inequality for the corresponding antiweb-1-wheel if

and only if this value is less than
�

n
t
−
�

n
t

	

(1− x∗

0). So we have proved
the next theorem.

Lemma 5.6.5.
If A is a minimum-weight (t)-antiweb in H of size congruent to q mod t,
then x∗ satisfies all (n, t)-antiweb-1-wheel inequalities with n congruent to
q modulo t and v0 as the hub if and only if the weight of A is at least�

n
t
−
�

n
t

	

(1− x∗

0).

Therefore, we want to find such a minimum weight (t)-antiweb (possi-
bly degenerate) generated by these t-cliques in H . The next corollary is
obtained by applying Theorem 5.3.1 for each q = 1, 2, . . . , t − 1 and every
possible hub to Lemma 5.6.5.

Theorem 5.6.6.
For fixed t holds that the separation problem for (t)-antiweb-1-wheel in-
equalities with respect to Q′

tSTAB(G) can be solved in polynomial time.

5.7. Antiweb-s-Wheel Inequalities and their Separation

In this section we generalize the notion of antiweb-1-wheel by permitting
larger cliques for the hub.

Definition 5.7.1 (simple antiweb-s-wheel).
Given an (n, t)-antiweb G1 = (V1, E1) with vertex set V1 = {v1, v2, . . . , vn},
a partition of V1 into E and O, and s ≥ 0. Consider a subdivision G of
G

v01 ,v02 ,...,v0s
1 . Let P0i,j denote the path obtained from subdividing the edge

{v0i , vj} (called a spoke), and let Pi,j (for vi, vj adjacent in G1) denote the
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v2

v4

v5

v3

v1

v02

v01

v8

v6

v7

Figure 5.5. Picture of a simple (8, 3)-antiweb-2-wheel,
where no edge is subdivided and all vertices (on the rim)
belong to O.

path obtained from subdividing the edge {vi, vj}. The resulting graph AWW
is a simple antiweb-s-wheel if it satisfies the following conditions:

1. For all i ∈ {1, 2, . . . , s} is the length of P0i,j even for j ∈ E and odd
for j ∈ O;

2. the length of the path Pi,j is even for i ∈ E and j ∈ O or j ∈ E and
i ∈ O;

3. the length of the path Pi,j is odd for i, j ∈ O; and
4. the length of the path Pi,j is odd for i, j ∈ E .

(Note, that edges between vertices of the hub-set {v01 , v02 , . . . , v0s} cannot
be subdivided.) Moreover let S(AWW), or simply S, be the set of internal
vertices of P0i,j for i = 1, 2, . . . , s, j = 1, 2, . . . , n, and R(AWW), or
simply R, be the set of internal vertices of all the Pi,j ’s for all i, j ∈
{1, 2, . . . , n}. The set of vertices {v01 , v02 , . . . , v0s} constitutes the hubset
of the antiweb-s-wheel, and the vertices in E ∪ O are the spoke-ends.

See Figure 5.7 for a simple antiweb-2-wheel. If t = 2, the antiweb-s-
wheel is just a s-wheel defined in [CC97]. For the proof of validity of their
underlying inequalities we need again to study a subdivision of cliques.
This time we purposely write Kt+s as K

v01 ,v02 ,...,v0s
t in the next definition.

Definition 5.7.2 (odd subdivision of (t ⊕ s)-clique).

Given a (t+ s)-clique K
v01 ,v02 ,...,v0s
t with vertex-set {v01 , v02 , . . . , v0s}∪V

where V = {v1, v2, . . . , vt} and a partition E ,O of V . Consider a subdivi-

sion G of K
v01 ,v02 ,...,v0s
t . Let P0i,j denote the path obtained from subdi-

viding the edge {v0i , vj} and let Pi,j (for vi, vj adjacent in G1) denote the
path obtained from subdividing the edge {vi, vj}. This graph G is an odd
subdivision of (t ⊕ s)-clique if all of the following four conditions hold:
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1. for all i ∈ {1, 2, . . . , s} is the length of P0i,j even for j ∈ E and odd
for j ∈ O,

2. the length of the path Pi,j is even for i ∈ E and j ∈ O or j ∈ E and
i ∈ O,

3. the length of the path Pi,j is odd for i, j ∈ O, and
4. the length of the path Pi,j is odd for i, j ∈ E .

(Note, that edges between vertices of the hub-set {v01 , v02 , . . . , v0s} cannot
be subdivided.) Moreover, the internal vertices on the P0i,j’s give the set S
and the internal vertices on the Pi,j’s give the set R.

Lemma 5.7.3 ((t ⊕ s)-clique inequality).

Given an odd subdivision of the (t ⊕ s)-clique K
v01 ,v02 ,...,v0s
t . Then the

following inequality is valid

(It⊕s)
s�

i=1

x0i + (t − 2 + s)
�

i∈E
xi +
�

i∈O
xi +
�

v∈S∪R
xv

≤ 1 +
|S|+ |R|+ (t − 3 + s)|E|

2
.

All x ∈ Q’(t+s−1)⊕1STAB(G) fulfill all (t ⊕ s)-clique inequalities.

Proof. For the proof it is only important to realize, that every (t⊕ s)-
clique is also a ((t + s − 1) ⊕ 1)-clique. Consider a (t ⊕ s)-clique G with
given vertex partition E∪̇O. Now notice that G is at the same time a
((t + s − 1) ⊕ 1)-clique with hub v01 and partition E ′ = E and O′ =
O ∪ {v02 , v03 , . . . , v0s} for the following reasons:
1. the paths between v01 and E and O behave properly as they did so
in the (t ⊕ s)-clique;

2. the paths between v01 and {v02 , v03 , . . . , v0s} are of length 1 and
therefore odd;

3. the paths from {v02 , v03 , . . . , v0s} to O are odd as they are in the
((t+ s − 1)⊕ 1)-clique;

4. the paths from {v02 , v03 , . . . , v0s} to E are even as they are in the
((t+ s − 1)⊕ 1)-clique.

So we have established that G is also a ((t + s − 1) ⊕ 1)-clique. Now it
suffices to observe that It⊕s is just the same as I(t+s−1)⊕1 so that validity
follows by Lemma 5.5.4. The second claim is now trivial.

The second part of Lemma 5.7.3 implies that after separating all ((t +
s− 1)⊕ 1)-clique inequalities no (t⊕ s)-clique inequality could be violated.



136 Antiwebs and Antiweb-Wheels for Stable Set Polytopes

Hence for fixed s, t we can from now on assume that for x∗ all (t⊕s)-clique
inequalities are fulfilled.
Next we need a path representation for the (t ⊕ s)-clique inequalities.

Unfortunately, this takes more effort than the preceding proof, as the
representation cannot be derived directly from the result about (t ⊕ 1)-
cliques.

Lemma 5.7.4.
A (t ⊕ s)-clique inequality can be rewritten as

It⊕s : −
�

P∈P(S)

w(P )−
�

P∈P(R)

w(P )− (t − 3 + s)
�

v∈E∪O
f(v)

+

�
t(s+ 2)

4
− 1
�
− t − 2

2

s�
i=1

x0i ≤ 0

where P(S) are the set of paths obtained by replacing the edges of the form
(v0, v) where v ∈ V (Kt), and P(R) the set of paths obtained by replacing
the edges of the form (u, v) where u, v ∈ V (Kt).

Again, the term (t⊕ s)-clique inequality in Lemma 5.7.4 refers to simple
and nonsimple instances. As before, the inequality should be interpreted
in the usual way for nonsimple configurations: The number of times we

appears is according to the number of roles it takes as multiple edges are
deleted.

Proof of Lemma 5.7.4. The part of the theorem about the represen-
tation is simply done by comparing the corresponding terms in the two
representations. Consider the multivariable function

φ = −
�

P∈P(S)

w(P )−
�

P∈P(R)

w(P )− (t − 3 + s)
�

v∈E∪O
f(v)

+

�
t(s+ 2)

4
− 1
�
− t − 2

2

s�
i=1

x0i

and compare the coefficients of the terms.
1. [x0i ]φ: As only the first and last coefficient contribute, we obtain

t/2− (t − 2)/2 = 1.
2. [xv]φ where v is an internal vertex in P ∈ P(S) ∪ P(R): As the
degree of xv is two and xv appears in either −�P∈P(S) w(P ) or

−�P∈P(R) w(P ) only, [xv]φ = 1/2 + 1/2 = 1.
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3. [xv]φ where v ∈ E : Then we obtain [xv](−
�

P∈P(S) w(P )) = s/2,

[xv](
�

P∈P(R) w(P )) = (t−1)/2 and [xv]f(v) = −1/2. Hence [xv]φ =

s/2 + (t − 1)/2 + (t − 3 + s)/2 = (t − 2 + s).
4. [xv]φ where v ∈ O: The terms are the same as in the last case
just the last term has opposite sign such that we obtain [xv]φ =
s/2 + (t − 1)/2− (t − 3 + s)/2 = 1.

5. [1]φ: Notice that the first term of φ contributes −(st + |S|)/2 the
second term−(2|R|+t(t−1))/4 the third term−(|E|−|O|)∗(t−3+s)/4
and the fourth term contributes −1+ t(2+s)/4. Adding them up and
using |O| = t − |E| yields the desired −1 − (|S| + |R| + (t − 3 +
s)|E|)/2.

The next theorem gives a class of valid inequalities whose support graphs
are antiweb-s-wheels. For t = 2, this class reduces to IE given in [CC97].

Theorem 5.7.5 (simple (n, t)-antiweb-s-wheel valid inequality).
Let AWW be an (n, t)-antiweb-s-wheel. Then the following inequality is
valid for STAB(AWW):

(IAWW)
�n

t

� s�
i=1

x0i +
�
i∈O

xi + (2t − 3 + s)
�
i∈E

xi +
�

v∈S∪R
xv

≤
�n

t

�
+

|S|+ |R|+ (2t − 4 + s)|E|
2

The class of (·, t)-antiweb-s-wheels is referred to as (t)-antiweb-s-wheels
and their corresponding inequalities are the (t)-antiweb-s-wheels inequali-
ties. For the proof of validity, we need an additional lemma.

Lemma 5.7.6.
Given a simple antiweb-s-wheel. Then |S|+ |R|+ (2t − 4 + s)|E| is even.

Proof. By the definition of E , the term |S| + s|E| is even. Obviously
(2t−4)|E| is even. Now consider a path Pi,j corresponding to a cross-edge.
If both ends are in O, then the number of internal vertices of Pi,j is even.
If both ends are in E , then the number of internal vertices of Pi,j is even.
If exactly one end of Pi,j is in E , then the number of internal vertices of
Pi,j is odd, and hence the number of internal vertices of Pi,j + 1 is even.
Hence |R|+ b is even where b is the number of Pi,j ’s with exactly one end
in E . Consider |R| + 2(t − 1)|E|. Note that 2(t − 1) is the number of Pi,j
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an element of E is on. We now observe that 2(t − 1)|E| = 2a + b where
a is the the number of Pi,j ’s with both ends in E . Hence b is even. This
implies |R| is even.

We are now ready to prove Theorem 5.7.5.

Proof of Theorem 5.7.5. Given a simple antiweb-s-wheel, consider
the subconfiguration (for a fixed i) generated by the paths P0l,i+1,
P0l,i+2, . . . , P0l,i+t (l = 1, 2, . . . , s) and Pi+j,i+k for 1 ≤ j, k,≤ t and j 
= k.
This is a (t ⊕ s)-clique inequality. We have n of these subconfigurations
one for each i = 1, 2, . . . , n. Adding up the inequalities of Lemma 5.7.3 for
each of these subconfigurations gives

n

s�

i=1

x0i + t(t − 2 + s)
�

v∈E
xv + t

�

v∈O
xv + t
�

v∈S
xv +

t−1�

i=1

(t − i)
�

v∈Ri

xv

≤ n+ t
|S|
2
+

t−1�

i=1

(t − i)
|Ri|
2

+
t(t − 3 + s)

2
|E|

where Ri is the set of internal vertices of paths corresponding to the cross-
edges of type i. For each path P arising from a cross-edge of type i, we
define the set Ai(P ) as in the proof of Theorem 5.5.2 and add the following i
times: xu+xv ≤ 1 for every {u, v} ∈ Ai(P ). Hence the resulting inequality
is

n

s�

i=1

x0i +

�
t(t − 2 + s) + 2

t−1�
i=1

i

��
i∈E

xi

+ t
�
i∈O

xi + t
�
v∈S

xv +
t−1�
i=1

(t − i+ i)
�

v∈Ri

xv

≤ n+ t
|S|
2
+

t−1�
i=1

(t − i+ i)
|Ri|
2

+
t(t − 3 + s)

2
|E|+ 2

�
t−1�
i=1

i

�
|E|
2

.

This simplifies to

n
s�

i=1

x0i + t(2t − 3 + s)
�
i∈E

xi + t
�
i∈O

xi + t
�

v∈S∪R
xv

≤ n+ t
|S|+ |R|+ (2t − 4 + s)|E|

2
.
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After we divide the inequality by t we notice, that by Lemma 5.7.6 the
term (|S|+ |R|+(2t− 4+ s)|E|)/2 is integral. So we can first round down
the coefficients of the hub vertices and then the right hand side. Hereby
the desired inequality is obtained:

�n

t

� s�
i=1

x0i + (2t+ s − 3)
�
i∈E

xi +
�
i∈O

xi +
�

v∈S∪R
xv

≤
�n

t

�
+

|S|+ |R|+ (2t − 4 + s)|E|
2

.

We note that we can extend all these inequalities to include the inequal-
ities for the corresponding nonsimple configurations by Lemma 5.2.1. As
before, such inclusion will prove crucial for our separation algorithm. But
before we can present the algorithm we need a path-representation of the
inequality of Theorem 5.7.5.

Lemma 5.7.7.
An antiweb-s-wheel inequality IAWW can be written as

−
�

P∈P(S)

w(P )−
t−1�
i=1

�
P∈P(Ji)

w(P )− (2t − 4 + s)
�

v∈E∪O
f(v)

−
�n

2
−
�n

t

�� s�
i=1

x0i +

�
n(s+ 2)

4
−
�n

t

��
≤ 0

where P(S) and P(Ji) are the sets of paths derived from the spokes and
i-edges, respectively.

Proof. It is clear that we only have to prove this result for the case
where the antiweb-s-wheel is simple, the nonsimple case follows directly.
Consider the multivariable function

φ = −
�

P∈P(S)

w(P )−
t−1�
i=1

�
P∈P(Ji)

w(P )− (2t − 4 + s)
�

v∈E∪O
f(v)

−
�n

2
−
�n

t

�� s�
i=1

x0i +

�
n(s+ 2)

4
−
�n

t

��

and compare the coefficients of the terms.

1. [x0i ]φ: We have [x0i ]φ = [x0i ](−
�

P∈P(S) w(P )) − (n/2 − �n/t�) =
n/2− n/2 + �n/t� = �n/t�.
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2. [xv]φ where v is an internal vertex in P ∈ P(S)∪P(J1)∪· · ·∪P(Jt):
As the degree of xv is two and xv appears in either −

�
P∈P(S) w(P )

or −�t−1
i=1

�
P∈P(Ji)

w(P ) only, [xv]φ = 1/2 + 1/2 = 1.

3. [xv]φ where v ∈ E : Then we obtain [xv](−
�

P∈P(S) w(P )) = s/2,

[xv](−
�t−1

i=1

�
P∈P(Ji)

w(P )) = (2t − 2)/2 and [xv]f(v) = −1/2.
Hence [xv]φ = s/2 + (2t − 2)/2 + (2t − 4 + s)/2 = 2t − 3 + s.

4. [xv]φ where v ∈ O: The first and second term are the same as in
the last case, for the third term we obtain [xv]f(v) = 1/2. Hence
[xv]φ = s/2 + (2t − 2)/2− (2t − 4 + s)/2 = 1.

5. [1]φ: We note that [1](
�

P∈P(S) w(P ) +
�t−1

i=1

�
P∈P(Ji)

w(P )) is

equal to 1/2 times the number of edges in the antiweb-s-wheel. The
number of edges in the antiweb-s-wheel is sn+n(t− 1)+ |S|+ |R| =
n(s + t − 1) + |S|+ |R|. Moreover, we observe that [1]f(v) = 1/4 if
v ∈ E and [1]f(v) = −1/4 if v ∈ O. Hence

[1]φ = −n(s+ t − 1) + |S|+ |R|
2

− 2t − 4 + s

4
(|E|−|O|)+ n(s+ 2)

4

−
�n

t

�
= −

�n

t

�
− |S|+ |R|+ (2t − 4 + s)|E|

2
as |O| = n − |E|.

Corollary 5.7.8.
Let W determine an inequality of the form IAWW that is most-violated by
x∗. Then every path in P(S)∪P(J1)∪P(J2)∪· · ·∪P(Jt−1) is a minimum-
weight walk with respect to w∗ of its parity joining its ends. In other words,
if P is such a (nonempty) walk, and P joins a to b, then for every nonempty
walk Q from a to b having the same parity as P , the weight of Q is at least
the weight of P with respect to w∗.

Proof. With

F =
�

P∈P(S)

w(P ) +

t−1�
i=1

�
P∈P(Ji)

w(P ) + (2t − 4 + s)
�

v∈E∪O
f(v)

+
�n

2
− n

t

� s�
i=1

x0i −
�

n(s+ 2)

4
− n

t

�

we rewrite IAWW as F ≥
�

n
t
−
�

n
t

	

(1−�s

i=1 x0i) (from Lemma 5.7.7).
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Motivated by Corollary 5.7.8 we define the auxiliary graph H and the
weight-functions w∗

E, w∗
O and w+ as in the proof of Lemma 5.6.2 and

proceed now with the construction of the separation method. Notice
that it suffices for separation, to solve the problem with a fixed hub-set
{v01 , v02 , . . . , v0s}.
For the ordered t-clique (possibly degenerate) (u1, u2, . . . , ut), we assign

the following weight to it:

1

t

s�

l=1

t�

i=1

w+(vO
0l

, ui) +
�

1≤j<i≤t

�
1

t − (i − j)

�
w+(ui, uj)

− s+ 2

4
+
1

t
+

t − 2
2t

s�
l=1

x∗
0l

+
t − 3 + s

t

t�
i=1

f+(ui)+
�

1≤j<i≤t

�
1

t − (i − j)
− 1

t

��
f+(ui) + f+(uj)

�
.

We claim that this weight is nonnegative. We rewrite it as

1

t

�
s�

l=1

t�
i=1

w+(vO
0l

, ui) + (t − 3 + s)
t�

i=1

f+(ui)

+
t − 2
2

s�
l=1

x∗
0l
+

�
1≤j<i≤t

w+(ui, uj)− t(s+ 2)

4
+ 1

�
�

+
�

1≤j<i≤t

�
1

t − (i − j)
− 1

t

�
(w+(ui, uj) + f+(ui) + f+(uj)).

The first two lines together are nonnegative because that term is propor-
tional to the form given in Lemma 5.7.4 and x∗ satisfies the trivial, edge,
cycle and (t ⊕ s)-clique inequalities. Each summand in the third line is
nonnegative by Lemma 5.6.1.
Suppose we have n ordered t-cliques, (u1

1, u
1
2, . . . , u

1
t ), (u

2
1, u

2
2, . . . , u

2
t ),

. . . , (un
1 , un

2 , . . . , un
t ), such that ui

j+1 = ui+1
j and ui

1 
= ui+1
t for i =

1, 2, . . . , n−1 and j = 1, 2, . . . , t−1, and un
j = u1

j+1 for j = 1, 2, . . . , t−1 and
un

t 
= u1
1. We note that these t-cliques generate a possibly degenerate (n, t)-

antiweb. Unlike the proof of Theorem 5.3.2, a degenerate (n, t)-antiweb
poses no problem as a loop induces a nonempty walk in the original graph.



142 Antiwebs and Antiweb-Wheels for Stable Set Polytopes

However, they may induce a nonsimple (n, t)-antiweb-1-wheel in the orig-
inal graph. Moreover, the total weight of these n ordered t-cliques is

�

P∈P(S)

w+(P ) +

t−1�

i=1

�

P∈P(Ji)

w+(P ) + (2t − 4 + s)
�

v∈E∪O
f+(v)

+
�n

2
− n

t

� s�
l=1

x∗
0l

−
�

n(s+ 2)

4
− n

t

�
.

To see this, we first observe that we only have to prove the claim in
which the resulting (n, t)-antiweb is simple; the nonsimple case follows
immediately. We proceed as follow.
1. For a given ui and 1 ≤ l ≤ s the term w+(vO

0l
, ui) appears with weight

1
t
in each of the exactly t of the n t-tuples; this gives w+(vO

0l
, ui) for

the total contribution.
2. For a given ui and uj , with j < i, where (ui, uj) is a k-edge in the
generated (n, t)-antiweb. Then it appears in t−k of the t-tuples; this
gives w+(ui, uj) for the total contribution as k = i − j.

3. Let u ∈ E ∪ O. Then u appears in exactly t of the n t-tuples.
Moreover, it appears as the ith entry of a t-tuple exactly once for
every 1 ≤ i ≤ t. Hence the total contribution is ((t−3+s)/t

�t
i=1 1+

2
�

1≤j<i≤t(1/(t−(i−j))−1/t))f∗(u) and that equals (2t−4+s)f∗(u).

4. As x∗
0l
appears with weight (t− 2)/(2t) in each of the n t-tuples, this

gives
�

n
2
− n

t

�
x∗

0l
for the total contribution.

5. The constant term in each of the n t-tuples is −(s+ 2)/4 + 1
t
so the

total contribution is −(n(s+ 2))/4 + n/t
Hence the claim is established.
This gives a violated inequality for the corresponding antiweb-s-wheel if

and only if this value is less than
�

n
t
−
�

n
t

	�
(1 −�s

l=1 x∗
0l
). So we have

proved the next lemma.

Lemma 5.7.9.
If A is a minimum-weight (t)-antiweb in H of size congruent to q mod t,
then x∗ satisfies all (n, t)-antiweb-s-wheel inequalities with n congruent to
q mod t and hub-set {v01 , v02 , . . . , v0s} if and only if the weight of A is at
least

�
n
t
−
�

n
t

	�
(1−

�s
i=1 x∗

0i
).

Hence we want to find such a minimum weight (t)-antiweb (possibly de-
generate) generated by these t-cliques in H . The next corollary is obtained
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by applying Theorem 5.3.1 for each q = 1, 2, . . . , t − 1 and every possible
hub-set {v01 , v02 , . . . , v0s} to Lemma 5.7.9.

Theorem 5.7.10.
For fixed s and t holds that the separation problem for (t)-antiweb-s-wheel
inequalities with respect to Q’(t+s−1)⊕1STAB(G) can be solved in polyno-
mial time.

5.8. Strength of the Antiweb Inequalities

An important question regarding the separability of the antiweb inequal-
ities is whether they are a subset of a larger but instead polynomially sepa-
rable class of cuts. One well-known large and polynomially separable class
of cuts is the set of orthogonality constraints as introduced in [GLS93]. In
this section we will prove that the antiweb inequalities are not implied by
the orthogonality constraints.
Another important measure of the strength of a class of inequalities

is the question whether they are facet-inducing and new. That antiweb
inequalities are facet-inducing is shown in [Lau89]. For the question of
novelty it is interesting to verify, whether the antiweb inequalities belong
to the noncombinatorial class of orthogonality constraints. This will be
answered to the negative in this section.

Definition 5.8.1.
Given a graph G(V, E), an assignment of vectors av from some �d to the
vertices v ∈ V is an orthogonal labeling of G if for every pair u, v of
nonadjacent vertices holds au · av = 0.

Orthogonal labelings are a way to generalize the polyhedral formulation
of the stable set problem of Ḡ. Whenever there is an edge {u, v} in Ḡ
(that is whenever u, v are not adjacent in G) we require for the stable set
polytope of Ḡ that

xu + xv ≤ 1.(5.1)

If, for the purpose of this paragraph, we restrict the dimension d of the or-
thogonal labeling to 1 we see that for binary labelings x the inequality (5.1)
can be as well described by the equation

xu · xv = 0.(5.2)
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In a way this correspondence establishes, that orthogonal labelings are just
a higher-dimensional analogue of stable sets of Ḡ. Another interpretation
is the following: as stable sets of Ḡ are cliques of G, orthogonal labelings
are a higher-dimensional analogue of cliques of G.
Next we can define the cost c of a vector av of an orthogonal labeling a

of G by 0 if av = 0 and otherwise by

c(av) =
a2

v1

a2
v1 + · · ·+ a2

vd

.

As QSTAB(G) is the set of all x ∈ �V
+ that fulfill for all cliques Q of G

that
�

v∈A xv ≤ 1 one can define similarly the set TH(G) to be the set of

all x ∈ [0, 1]V that fulfill for all orthogonal labelings a of G the constraints
aT x ≤ 1 (TH was in fact first defined in [GLS93]). This construction raises
of course the question of the relation between TH(G) and STAB(G) and
QSTAB(G). The next proposition settles this.

Proposition 5.8.2 ((9.3.4) of [GLS93]).

STAB(G) ⊆ TH(G) ⊆ QSTAB(G)

Similar to the well-known weighted stability number

α(G, w) = max{wT x : x ∈ STAB(G)}

one can define the Lovász-Theta function that is originally defined in
[Lov79]; but we stress here, that the ϑ(G) given in [Lov86] corresponds
here and in the remaining literature to ϑ(Ḡ). So ϑ(G, w) = max{wT x : x ∈
TH(G)}; similarly we use ϑ(G) as an abbreviation for ϑ(G,1). A simple
consequence of Proposition 5.8.2 is

α(G, w) ≤ ϑ(G, w) ≤ max{wT x : x ∈ QSTAB(G)}.

The orthogonality constraints are now all inequalities of the form wT x ≤
ϑ(G, w) for w ∈ �

V
+ . Of course they are valid inequalities for STAB(G);

furthermore their intersection (with the positive orthant) is TH(G),
see [GLS93, Cor. 9.3.22(b)] and they prove that TH(G) is a polytope if and
only if G is perfect. As we want to show that TH(G) \AtSTAB(G) 
= ∅ it
suffices to show for a family of graphs Gl that ϑ(Gl) > αAtSTAB(Gl) where
αAtSTAB(Gl) = max{1T x : x ∈ AtSTAB(Gl)}.
For our proof we will need another (equivalent) definition of ϑ(w, G)

(this is the function ϑ4 of [Knu94]; there it is shown in Theorem 12, that
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ϑ and ϑ4 are the same). Here is the definition of ϑ4 :

ϑ4(G, w) = max

�
�

v

c(bv)wv : b is an orthogonal labeling of Ḡ

�

Because we only aim to prove that ϑ(Gl) > αAtSTAB(Gl) we can make
the next two simplifying assumptions:
1. As we know αAtSTAB(Gl) exactly for Gl being a (t)-antiweb, it suffices
to provide a lower bound on ϑ(Gl,1). So to bound ϑ4 from below we
need to find only a good orthogonal labeling of Ḡl.

2. It suffices to prove ϑ(Gl) > αAtSTAB(Gl) for (sufficiently) large l.
Therefore, for Gs we will consider only the (6s + 1, 3)-antiwebs. So, let
n = 6s + 1 and d = 2s+ 1.
We want to obtain an orthogonal labeling of AW(n, 3). We start with

the approach

bv =

�
�����

α0

α1 cos(ϕv)
α1 sin(ϕv)
α2 cos(ϕdv)
α2 sin(ϕdv)

�
����� ,(5.3)

where α1, α2 and ϕ are parameters to be determined.

For an orthogonal labeling of AW(n, 3) we need that bv · bv+1 = 0 =
bv · bv+2 for all v. The choice ϕ = n−1

n
π guarantees that mϕ is a multiple

of 2π iff m is a multiple of n (for this the fact n ≡ 1 mod 2 is used). Notice
that

0 = bv · bv+1 = α2
0 + α2

1 cos(ϕv) cos(ϕ(v + 1)) + α2
1 sin(ϕv) sin(ϕ(v + 1))

+ α2
2 cos(ϕdv) cos(ϕd(v + 1)) + α2

2 sin(ϕdv) sin(ϕd(v + 1)).

Now use the identity cos(β) cos(γ) + sin(β) sin(γ) = cos(β − γ) from
[BSMM99, Eq. (2.86)] to simplify the last expression to

0 = bv · bv+1 = α2
0 + α2

1 cos(ϕ) + α2
2 cos(dϕ).(5.4)

Similarly, the condition 0 = bv · bv+2 implies

0 = bv · bv+2 = α2
0 + α2

1 cos(2ϕ) + α2
2 cos(2dϕ).(5.5)

Subtracting the Equation (5.4) from Equation (5.5) leads to

(cos(2ϕ) − cos(ϕ))α2
1 + (cos(2dϕ)− cos(dϕ))α2

2 = 0.(5.6)
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Now we can use the trigonometric identity cos(β)− cos(γ) = −2 sin β+γ
2

∗
sin β−γ

2
from [BSMM99, Eq. (2.113)] to obtain

α2
1 = − sin

�
3d
2

ϕ
�
sin

�
d
2
ϕ
�

sin
�

3
2
ϕ
�
sin

�
1
2
ϕ
� α2

2.

To simplify matters, we fix α2
2 to 1, because the cost of an orthogonal

labeling is invariant under nonzero scalings. So we need to show that

α2
1 = − sin

�
3d
2

ϕ
�
sin

�
d
2
ϕ
�

sin
�

3
2
ϕ
�
sin

�
1
2
ϕ
�(5.7)

is nonnegative. To prove this we first observe the following:

d

2
ϕ = sπ +

2s

6s+ 1
π = sπ +

1

3
ϕ

3d

2
ϕ = 3sπ +

6s

6s+ 1
π = 3sπ + ϕ

dϕ = 2sπ +
4s

6s+ 1
π = 2sπ +

2

3
ϕ.

This implies for the trigonometric functions:

sin

�
3d

2
ϕ

�
sin

�
d

2
ϕ

�
= (−1)3s sinϕ (−1)s sin ϕ

3

= sinϕ sin
ϕ

3

cos (dϕ) = cos

�
2

3
ϕ

�
.

So we get the following simplified expression for α2
1 :

α2
1 = − sinϕ sin

�
1
3
ϕ
�

sin
�

1
2
ϕ
�
sin

�
3
2
ϕ
�

= −2cos
�

1
2
ϕ
�
sin

�
1
3
ϕ
�

sin
�

3
2
ϕ
�

by additionally using the identity sin ϕ

sin( 1
2 ϕ)

= 2 cos
�

1
2
ϕ
�
. Notice, that non-

negativity of α2
1 is easy, as:

• 0 < 1
2
ϕ < π

2
, hence 0 < cos

�
1
2
ϕ
�
;

• 0 < 1
3
ϕ < π

2
, hence 0 < sin

�
1
3
ϕ
�
; and

• π < 3
2
ϕ < 3

2
π, hence 0 > sin

�
3
2
ϕ
�
.
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So we can conclude that there is a solution with α2
1 > 0 and α2

2 = 1.
It remains to show that α2

0 also is nonnegative for this setting. From
Equation (5.4) we obtain

α2
0 = − cos dϕ+ 2 cosϕ

cos
�

1
2
ϕ
�
sin

�
1
3
ϕ
�

sin
�

3
2
ϕ
�

= − cos
�
2

3
ϕ

�
+ 2

cosϕ cos
�

1
2
ϕ
�
sin

�
1
3
ϕ
�

sin
�

3
2
ϕ
� .

Now notice that − cos 2
3
ϕ > 0, cosϕ < 0, cos

�
1
2
ϕ
�

> 0, sin
�

1
3
ϕ
�

> 0, and

sin
�

3
2
ϕ
�

< 0. Hence, α2
0 > 0.

We obtain for c(bv) the following expression:

c(bv) =
− cos

�
2
3
ϕ
�
+ 2

cos ϕ cos( 1
2 ϕ) sin( 1

3 ϕ)
sin( 3

2 ϕ)

1− 2 cos( 1
2 ϕ) sin( 1

3 ϕ)
sin( 3

2 ϕ)
− cos

�
2
3
ϕ
�
+ 2

cos ϕ cos( 1
2 ϕ) sin( 1

3 ϕ)
sin( 3

2 ϕ)

.(5.8)

This can be simplified to

c(bv) =
− cos

�
2
3
ϕ
�
+ 2

cos ϕ cos( 1
2 ϕ) sin( 1

3 ϕ)
sin( 3

2 ϕ)

1− cos
�

2
3
ϕ
�
+ 2(cosϕ − 1) cos( 1

2 ϕ) sin( 1
3 ϕ)

sin( 3
2 ϕ)

.(5.9)

The substitution ψ = 1
6
ϕ yields

c(bv) =
− sin 9ψ cos 4ψ + 2 cos 6ψ cos 3ψ sin 2ψ

(1− cos 4ψ) sin 9ψ + 2(cos 6ψ − 1) cos 3ψ sin 2ψ .

Next we set x = cosψ and y = sinψ to use the following formulas about
trigonometric functions of multiple angles from [BSMM99, Eqs. (2.104),
(2.105) using 1 = x2 + y2]:

sin 2ψ = 2xy

sin 9ψ = 256yx8 − 448yx6 + 240yx4 − 40yx2 + y

cos 2ψ = x2 − y2

cos 3ψ = 4x3 − 3x
cos 4ψ = 8x4 − 8x2 + 1

cos 6ψ = 32x6 − 48x4 + 18x2 − 1
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and obtain

c(bv) =
1

32

(128x8 − 288x6 + 208x4 − 48x2 + 1)(16x4 − 12x2 + 1)

(4x6 − 9x4 + 6x2 − 1)x2(16x4 − 12x2 + 1)

=
1

32

128x8 − 288x6 + 208x4 − 48x2 + 1

(4x6 − 9x4 + 6x2 − 1)x2
.

Recall that x = cos
�

1
6

6s
6s+1

π
�

. Now everything is set to study the asymp-

totics of the lower bound of the theta function and the rank.

Lemma 5.8.3.

lim
s→∞

(6s+ 1) · c(bv)− 2s = lim
s→∞

2s · (3c(bv)− 1) + c(bv)

=
1

3
+ lim

s→∞
2s · (3c(bv)− 1) =

1

3
− π

√
3

27
≈ 0.1318

Proof. First, it is easy to check that c(bv)→ 1
3
as s → ∞, as everything

involved is continuous. The other term is more difficult, as 2s → ∞
but (3c(bv) − 1) → 0; instead we can look at lims→∞

3c(bv)−1
1/(2s)

. This asks

for l’Hospital’s rule (see [Heu90, Thm. 50.1]), that is indeed applicable,
because

• the numerator and denominator go to 0;
• the denominator is differentiable on [1,+∞[ and its derivative is 
= 0
on [1,+∞[;

• the numerator is differentiable on [s0,+∞[ for sufficiently large s0.
The derivative of the denominator is −1

2s2 . For the derivative of the nu-

merator we will use the chainrule to evaluate d
ds

x and d
dx
(3c(bv)− 1). The

first term is simpler:

d

ds
x =

−π

(6s+ 1)2
sin

sπ

6s + 1
.

For the second term we obtain

d

dx
(3c(bv)− 1) =

−3
16

· 128x8 − 208x6 + 96x4 − 11x2 + 1

x3(4x4 − 5x2 + 1)(4x6 − 9x4 + 6x2 − 1) .
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Hence, with l’Hospital we obtain:

lim
s→∞

3c(bv)− 1
1/(2s)

= lim
s→∞

−π
(6s+1)2

sin sπ
6s+1

· −3
16

· 128x8−208x6+96x4−11x2+1
x3(4x4−5x2+1)(4x6−9x4+6x2−1)

−1
2s2

=
−3π
16

· lim
s→∞

2s2

(6s+ 1)2
· lim

s→∞
sin

sπ

6s+ 1

· lim
s→∞

128x8 − 208x6 + 96x4 − 11x2 + 1

x3(4x4 − 5x2 + 1)(4x6 − 9x4 + 6x2 − 1)

=
−3π
16

· 1
18

· 1
2
· 64
9

√
3

=
−π

√
3

54
≈ −0.2015332628

The following theorem is now a simple consequence of the previous
lemma.

Theorem 5.8.4.
For sufficiently large s it holds that ϑ(AW(6s + 1, 3)) − rank(AW(6s +
1, 3)) > 0.1. Hence the (6s+ 1, 3)-antiweb inequalities do not belong to the
class of orthogonality cuts.

Additionally, an empirical study verified that the (6s+1, 3)-inequalities
are not dominated by the orthogonality constraints for small to reasonable
sized s (s ≤ 10000).

5.9. General Applicable Subdivision Theorems

In this section we study three different procedures to obtain new facets of
one graph from facets of a smaller, related graph. The first two procedures
are known from the literature and therefore they are reviewed quickly. The
third one is new. Finally their interactions are studied.

5.9.1. Adding an Apex. The operation of adding an apex and its
polyhedral consequences was well studied, see [Chv75]. It turns out that
adding an apex is the same as substituting the graph into one vertex of a
K2.
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Definition 5.9.1 (apex and spokes).
Given a graph G(V, E) and a vertex v /∈ V we define the graph Gv on
the vertex set V ∪ {v} and edge set E ∪ {{u, v} : u ∈ V }. The vertex v
is called apex of Gv. The edges build like {v0i , v} with v ∈ V of a graph
Gv01 ,v02 ,...,v0k are called spokes. If G is an antiweb, then the edges of G
in Gv01 ,v02 ,...,v0k are again referred to as cross-edges (that have naturally
a type as defined for the antiweb).

Remark 5.9.2.
Henceforth, whenever we speak of Gv we will assume that v /∈ V (G).

Proposition 5.9.3.
Given a graph G and an inequality aT x ≤ b which defines a facet of
STAB(G) with b > 0. Then the inequality aT x+ bxv ≤ b defines a facet of
STAB(Gv).

Proof. The validity is immediate. From the facetness for STAB(G) we
know that a |V |× |V | matrix Y exists, so that its column vectors belong to
STAB(G) and span the old facet. Furthermore, all column vectors from Y
belong also to the new facet and STAB(Gv). Another column vector which
belongs to both is the vector ev.

Y new =

�
����

0

Y
...
0

0 · · · 0 1

�
���� .

It is simple to see that Y new has full rank.

5.9.2. Double Edge Subdivision. The following is a special form of
a result of Wolsey [Wol76].

Proposition 5.9.4 (double edge subdivision).
Let G = (V, E) be a graph and cT x ≤ d (c ≥ 0, d > 0) be facet-inducing for
STAB(G) with {a, b} ∈ E and ca ≥ cb = γ. Let G′ be the graph obtained
from G by replacing {a, b} by the path a−y−z−b where y, z /∈ V . Suppose
that

1. there exists a stable set S in G with cT xS = d and a, b /∈ S, and
2. there exists a stable set S in G with cT xS = d, a ∈ S, b /∈ S and

h /∈ S for all h ∈ N(b) \ {a}.
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Then cT x+ γxy + γxz ≤ d+ γ is facet-inducing for STAB(G′).

For a proof see [Che95, Lemma 2.3.6]. In fact, the converse of Propo-
sition 5.9.4 is true. To see this, assume I ′ : cT x + γxy + γxz ≤ d + γ is
facet-inducing for STAB(G′). Then there exists a stable set S of G with
a, y /∈ S such that its incidence vector satisfies I ′ with equality. Therefore,
z ∈ S and b /∈ S. Hence S′ = S \{z} is a stable set of G with a, b /∈ S′ that
satisfies I : cT x ≤ d with equality. There also must exist a stable set S of
G with y, z /∈ S whose incidence vector satisfies I ′ with equality. Hence
a, b ∈ S and all the neighbors of b in G′ do not belong to S. Thus S \ {b}
satisfies Condition 2 in Proposition 5.9.4.
In almost all our applications, we have γ = 1. We note that if cT x ≤ d

is not an edge inequality, then Condition 1 in Proposition 5.9.4 is auto-
matically satisfied. Furthermore, if deg(b) = 2 then Condition 2 in Propo-
sition 5.9.4 is also automatically satisfied.
The following lemma is the validity version of Proposition 5.9.4.

Lemma 5.9.5.
Let G = (V, E) be a graph and cT x ≤ d (c ≥ 0, d > 0) be valid for STAB(G)
with {a, b} ∈ E and γ = min{ca, cb}. Then cT x + γxy + γxz ≤ d + γ is
valid for STAB(G′).

Proof. Consider a stable set S′ of G′ and its incidence vector xS′
. If

a, b ∈ S′ then y, z /∈ S′. Without loss of generality we can assume ca = γ.
Notice, that S = S′ − a is a stable set of G. Plugging xS into the valid

inequality of STAB(G) shows cT xS ≤ d and then cT xS′
+ γxS′

y + γxS′
z =

cT xS + γ ≤ d+ γ. If only one of a, b is in S′ then only one of y, z is in S′.
Again, S = S′ \ {y, z} is stable in G and validity of the initial inequality

of STAB(G) yields cT xS′
+ γxS′

y + γxS′
z ≤ cT xS + γ ≤ d+ γ.

We need the following Proposition from [BM94, Thm. 2.5].

Proposition 5.9.6.
Let G = (V, E) be a graph. Let aT x ≤ α be a facet-inducing inequality of
STAB(G). Suppose that G contains a path p − u − v − q such that u and
v are of degree 2. Assume also that ap = au = av = β. Let G′ = (V ′, E′)
be the graph obtained from G by replacing the path by the edge {p, q}. Let
āu = au for u ∈ V ′ and ᾱ = α − β, then āT x ≤ ᾱ is facet-inducing for
STAB(G′).
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Similarly, if only validity is required, the next lemma is helpful.

Lemma 5.9.7.
Let G = (V, E) be a graph. Let aT x ≤ α be a valid inequality of STAB(G).
Suppose that G contains a path p − u − v − q such that u and v are of
degree 2. Assume also that au = av = β ≤ min{ap, aq}. Let G′ = (V ′, E′)
be the graph obtained from G by replacing the path by the edge {p, q}. Let
āu = au for u ∈ V ′ and ᾱ = α − β, then āT x ≤ ᾱ is valid for STAB(G′).

(Note that the condition is au = av = β ≤ min{ap, aq} and not au =
av = β = min{ap, aq}.)

5.9.3. Star Subdivision. We give a new theorem for lifting valid in-
equalities and facets from a graph to another graph where all edges incident
with a single vertex are subdivided once. This graph operation was already
introduced in [BM94, Thm. 2.3]. But our operation leads to another class
of faces for the new graph. The proof of validity is different from theirs.
Surprisingly, the proof of the facetness is the same (repeated here for sake
of completeness). Our result differs from that given in [BM94, Thm. 2.3]
in that we relax one prerequisite of their theorem while we replace their
other condition by a stronger requirement. The resulting theorem cannot
be proved in the same generality as [BM94, Thm. 2.3]. A simple calculation
demonstrates that if the incidence-structure for facetness of Theorem 5.9.8
has to be maintained and the inequality should be valid, then the general-
izing parameter p of Theorem [BM94, Thm. 2.3] can only have value 1 for
our theorem.

Theorem 5.9.8 (star subdivision).
Let G = (V, E) be a graph and aT x ≤ α be a nontrivial valid inequality.
Let v be a vertex of G and N = {v1, . . . , vk+1} be the set of neighbors of v
where k ≥ 1. Let G′ = (V ′, E′) be the graph obtained from G by subdividing
each edge {v, vi} with a new node v′

i for i = 1, . . . , k + 1. Set
āu = au for u ∈ V \ {v},
āv = k,
āv′

i
= 1 for i = 1, 2, . . . , k + 1,

ᾱ = α+ k.
1. Suppose that av = 1 (actually only av > 0 is necessary, but in this

case the definition of ā is less simple). Then āT x ≤ ᾱ is a valid
inequality of STAB(G′).
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2. If additionally aT x ≤ α defines a facet of STAB(G) and for each

i = 1, . . . , k + 1, there exists a stable set S̃i such that aT xS̃i = α and
S̃i ∩ N = {vi} then āT x ≤ ᾱ defines a facet of STAB(G′).

Proof. For the first part suppose S′ is a stable set that violates the
new inequality:
1. If v ∈ S′ and the left hand side is > α + k. Then v′

i is not in S′ for
all i. So S′ \ {v} violates the old inequality because the left hand side
would be > α.

2. If v /∈ S′, v′
i in S′ for all i and the left hand side is> α+ k. Then vi

is not in S′ for all i. So {S′ \ {v′
1, v

′
2, . . . , v

′
k+1}} ∪ {v} is a stable set

for the old graph. The left hand side is > α+ k − (k + 1) + 1 = α.
3. If v /∈ S′, not all v′

i are in S′ and the left hand side is > α+ k. Let U
be the set of v′

i in S′. Then |U | ≤ k and S′ \ U is a stable set for old
graph. The left hand side > α+ k − |U | ≥ α.

Now we consider the facetness. Notice that the old facet is spanned by
a set of column vectors of the following form:

Y old =

�
� 0 · · · 0 0 · · · 0 1 · · · 1

Y 00 Y 01 Y 02

Y 10 Y 11 Y 12

�
� .

(The row indices are v0 followed by v1, . . . , vk+1 followed by the rest of
the vertices.) These column vectors are incidence vectors of n stable sets

S1, . . . , Sn of G. As the incidence vectors corresponding to S̃1, . . . , S̃k+1

are linearly independent, we can assume without loss of generality, that
Si = S̃i for i = 1, 2, . . . , k + 1 and that the columns of�

� 0 · · · 0
Y 00

Y 10

�
�

correspond to the incidence vectors S̃i for i = 1, 2, . . . , k + 1.
For the new face consider for i = 1, 2, . . . , n the following sets:

S′
i =

�
(Si \ {v})∪̇{v′

1, v
′
2, . . . , v

′
k+1}, if v ∈ Si,

Si∪̇{v}, if v /∈ Si,

and for i = 1, 2, . . . , k + 1 :

S′
n+i = S̃i∪̇({v′

1, v
′
2, . . . , v

′
k+1, } \ {v′

i}).
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Then the columns of

Y new =

�
��������

1 · · · 1 1 · · · 1 0 · · · 0 0 · · · 0
0 · · · 0 0 · · · 0
... · · ·

...
... · · ·

... E E− I
0 · · · 0 0 · · · 0

Y 00 Y 01 Y 02 Y 00

Y 10 Y 11 Y 12 Y 10

�
��������

correspond to stable sets in the new face. (The rows are indexed by v, v0, v1,
. . . , vk, v′

0, v
′
1, . . . , v

′
k and then by all the other vertices.) Now assume that

the face induced by āT x ≤ ᾱ is contained in the face induced by another
inequality bT x ≤ ᾱ.
By subtracting the columns of the first block from those of the last block

we see that bv′
i
= bv

k
for i = 1, 2, . . . , k + 1.

There is some number δ > 0 such that ᾱ − bv = δα. To see this, note
that δ < 0 would imply ᾱ < bv, but then the original inequality bT x ≤ α is
invalid; δ = 0 implies ᾱ = bv, but, as the set {v, u} is stable for all vertices
u nonadjacent with v, this implies bu = 0 for all non-neighbors u of v.
Thereby, the graph induced by the non-zero-coefficients is a star, which is
not 2-connected (the support of every facet inducing inequality can never
have a complete subgraph as cut-set by [Chv75, Thm. 4.1]) unless some of
bv′

i
’s are 0 and the support graph is the graph consisting of v or a graph

consisting of an edge of the form {v, v′
i}. Both cases are impossible as we

have a stable set that satisfies āT x = ᾱ and hence bx = ᾱ that does not
contain v. Given v′

i, we also have a stable set that satisfies āT x = ᾱ and
hence bT x = ᾱ that does not contain v and v′

i.

As bT xS′
i = ᾱ, i = 1, 2, . . . , n this implies bT xS′

i − bv = ᾱ − bv, i =
1, 2, . . . , n. Now define a vector c by cu = bu for all u ∈ V \ {v} and
cv =

bv
k

. As bT xS′
i − bv = cT xSi , and ᾱ − bv = δα, and a is the unique

solution of aT xSi = α, i = 1, 2, . . . , n, (as the xSi are linearly independent)
we can conclude that c = δa.
This in turn implies

bu = δau for u ∈ V \ {v} and bv′
i
= δav and bv = δkav(= δk).

As α+ k = ᾱ and ᾱ = δα+ bv = δα+ δk we can conclude δ = 1.
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Lemma 5.9.9 (Incidence vectors of star subdivided faces).
All stable sets S whose incidence vectors fulfill the valid inequality āT x ≤ ᾱ
of Theorem 5.9.8 (constructed from a valid inequality of the not star subdi-
vided underlying graph) with equality fulfill one of the following conditions

1. v ∈ S,
2. v /∈ S, but all v′

i ∈ S, or
3. v /∈ S, and exactly k of the v′

i belong to S.

Proof. Suppose for a contradiction that we have a stable set S with v /∈
S and at most k−1 of the v′

i belong to S. Then (S∪{v})\{v′
1, v

′
2, . . . , v

′
k+1}

is a stable set of the unsubdivided underlying graph but it violates that
corresponding inequality.

Lemma 5.9.10 (Converse of Theorem 5.9.8).
The converse of Theorem 5.9.8 part 2 is true. That is, if one of the sets
S̃i does not exist, then the resulting face is not a facet.

Proof. So assume there is no set S̃ with (say) S̃ ∩ N = {v1}. Then we
claim that the new face āT x ≤ ᾱ is contained in the face xv +xv′

1
≤ 1. For

this we will show that āT x = ᾱ implies xv + xv′
1
= 1.

Using the possible types for a stable set S′ with āT xS′
= α characterized

by Lemma 5.9.9 we notice that types 1 and 2 obviously fulfill xv+xv′
1
= 1.

So we need to study S′ of type 3. A set S′ of type 3 could contradict
the equation xv + xv′

1
= 1 only if v′

1 does not belong to S′. If additionally

v1 /∈ S′ then the stable set S′ ∪ {v′
1} would violate āT x ≤ ᾱ (because

āv′
1
= 1 > 0).

So we can assume v1 ∈ S′. If S′ ∩ N were equal to {v1}, then the set
S′ minus the v′

i vertices would belong to the facet aT x ≤ α and would
intersect N only in {v1} contrary to the assumption that every stable set
from the facet which contains v1 contains another neighbor of v.
So we know, that S′ contains at least two different vi. Therefore S′

can contain at most k − 1 of the v′
i. So if we delete the (at most) k − 1

different v′
i from S we obtain a stable set S with aT xS ≥ āT xS′ − (k−1) =

ᾱ− (k− 1) = α+ k− (k− 1) = α+1. So this beast would violate the valid
inequality we started with. Hence it cannot be!

Lemma 5.9.11 (not Theorem 5.9.8).
If the valid inequality (with av = 1) to start with in Theorem 5.9.8 is not
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a facet, then the resulting face is not a facet.

Proof. So assume the face aT x ≤ α of G is contained in another face
bT x ≤ β. As av = 1 we can choose for bT x ≤ β an inequality with bv = 1.
Then we want to show that the face āT x ≤ ᾱ is contained in b̄T x ≤ β̄. For

this it suffices to show for every stable set S′ of G′ that āT xS′
= ᾱ implies

b̄T xS′
= β̄.

Again we use the characterization of stable sets S′ with āT xS′
= α by

Lemma 5.9.9. For these cases we obtain:
1. aT xS′−v = α holds; hence follows bT xS′−v = β and b̄T xS′

= β̄.

2. aT xS′+v−N′
= α holds; hence follows bT xS′+v−N′

= β and b̄T xS′
= β̄.

3. notice that if |S′ ∩ N ′| < k then aT xS′−N′
> ᾱ − k = α, which is

impossible. If |S′ ∩ N ′| > k then actually |S′ ∩ N ′| = k + 1 and S′ is

of second type. So we can assume |S′ ∩N ′| = k. Then aT xS′−N′
= α

hence bT xS′−N′
= β hence b̄T xS′

= β̄.

5.9.4. Interaction of Star Subdivision and Edge Subdivision.

Lemma 5.9.12 (Iterative application of Theorem 5.9.8).
Assume that the vertices v, w of a graph G fulfill the conditions of Theo-
rem 5.9.8 with respect to G and the facet defining inequality aT x ≤ α. Let
G′ be the graph constructed as in Theorem 5.9.8 from v. Then w fulfills the
conditions of Theorem 5.9.8 with respect to G′ and āT x ≤ ᾱ.

Proof. Let the neighbors of v in G be {v1, v2, . . . , vk+1} and the

neighbors of w in G are {w1, w2, . . . , wl+1}. Let S̃1, S̃2, . . . , S̃k+1 and

Ũ1, Ũ2, . . . , Ũl+1 be the stable sets in the facet with S̃i∩{v1, v2, . . . , vk+1} =
vi and Ũi ∩ {w1, w2, . . . , wl+1} = wi.
There are two cases, depending on the adjacency of v and z.
Case v and w are non-adjacent in G: Let N = {v1, v2, . . . , vk+1} be the
set of neighbors of v in G and M = {w1, w2, . . . , wl+1} the set of
neighbors of w in G. Notice that M ′ = M is additionally the set of
neighbors of w in G′, as v, w are non-adjacent.
For i = 1, 2, . . . , l + 1 let

Ũ ′
i =

�
Ũi \ {v}∪̇{v′

1, v
′
2, . . . , v

′
k+1} : if v ∈ Ũi,

Ũi∪̇{v} : if v /∈ Ũi.
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Notice, that aT xŨi = α implies āT xŨ′
i = ᾱ. Now we want to show that

Ũ ′
i fulfill the conditions of Theorem 5.9.8 with respect to āT x ≤ ᾱ
and G′. Notice first āw = aw and aw = 1 by assumption. Then
consider Ũ ′

i ∩M ′; by construction wi ∈ Ũi and by case wi 
= v, hence
wi ∈ Ũ ′

i and wi ∈ Ũ ′
i ∩ M ′ follows. Now assume that wj ∈ Ũ ′

i . If

wj ∈ Ũi, then j = i, otherwise either wj = v which is impossible or
wj ∈ {v′

1, v
′
2, . . . , v

′
k+1} which is also impossible. Hence we succeeded

in proving Ũ ′
i ∩ M ′ = {wi} and all conditions of Theorem 5.9.8 are

satisfied.
Case v and w are adjacent in G: Without loss of generality assume that

v1 = w and w1 = v. LetN = {v1, v2, . . . , vk+1} be the set of neighbors
of v in G and M = {w1, w2, . . . , wl+1} the set of neighbors of w in G.
Notice that M ′ = {v′

1, w2, w3, . . . , wl+1}, the set of neighbors of w in
G′, is different from M.
For i = 1, 2, . . . , l + 1 let

Ũ ′
i =

�
Ũi \ {v}∪̇{v′

1, v
′
2, . . . , v

′
k+1} : if v ∈ Ũi,

Ũi∪̇{v} : if v /∈ T̃i.

Notice, that aT xŨi = α implies āT xŨ′
i = ᾱ. Now we want to show

that Ũ ′
i fulfill the conditions of Theorem 5.9.8 with respect to āT x ≤

ᾱ and G′. Notice first āw = aw and aw = 1 by assumption. As
Ũ ′

i = Ũi∪̇{v} for i = 2, 3, . . . , l+ 1 it follows that Ũ ′
i ∩ M ′ = {wi} for

i = 2, 3, . . . , l + 1. For i = 1 holds Ũ ′
i = Ũi \ {v}∪̇{v′

1, v
′
2, . . . , v

′
k+1}

and thereby Ũ ′
1 ∩ M ′ = {v′

1} and all conditions of Theorem 5.9.8 are
satisfied.

Lemma 5.9.13.
Let H be a graph. Suppose H ′ is obtained from H by replacing an edge
{a, b} by a−y−z−b. Suppose cT x ≤ d is not an edge inequality. If cT x ≤ d
is facet-inducing for STAB(H) with c ≥ 0, ca ≥ cb = γ and d > 0, and
{a, b} satisfies Condition 2 of Proposition 5.9.4 with respect to I : cT x ≤ d,
then I ′ : cT x+γxy+γxz ≤ d+γ is facet-inducing for STAB(H ′). Moreover,
{a, y}, {y, z} and {z, b} satisfy Condition 2 of Proposition 5.9.4 with respect
to I ′; (f, h) ∈ E(H)∩E(H ′) satisfies Condition 2 of Proposition 5.9.4 with
respect to I if and only if {f, h} satisfies Condition 2 of Proposition 5.9.4
with respect to I ′.
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Proof. First we prove the forward implication. It follows from Propo-
sition 5.9.4 that I ′ is facet-inducing for STAB(H ′). Clearly any edge of the
path a − y − z − b satisfies the hypotheses in Proposition 5.9.4 because of
deg(y) = deg(z) = 2. Now suppose {a1, b1} ∈ E(H) ∩ E(H ′). As {a1, b1}
(with respect to H) satisfies the hypotheses, there is a stable set of U whose
incidence vector xU satisfies cT x ≤ b with equality and a1 ∈ U , b1 /∈ U and
f /∈ U for all f ∈ N(b1) \ {a1}. If b1 /∈ {a, b}, then we can extend U to U ′

by letting U ′ = (U \ {z})∪ {y} if a /∈ U , or by letting U ′ = (U \ {y})∪ {z}
if b /∈ U. Now U ′ does the job. If b1 = a, then we can extend U to U ′ by
letting U ′ = (U \{y})∪{z} (as b /∈ U); therefore U ′ does the job. If b1 = b,
then we can extend s to s′ by letting U ′ = (U \ {z}) ∪ {y} (as a /∈ U);
therefore U ′ does the job.
Now we do the backward implication. Suppose (f, h) satisfy Condition

2 of Proposition 5.9.4 with respect to I ′. Let S be a stable set that fulfills
the condition. Assume cf ≥ ch = β. We consider several cases:

a = h: Then b 
= f , f ∈ S and h, b /∈ S. Because the incidence vector
of S satisfies I ′ with equality, we may assume y ∈ S. Hence S \ {z}
satisfies Condition 2 of Proposition 5.9.4 with respect to I .

b = h: Then a 
= f , f ∈ S and h, a /∈ S. Because the incidence vector
of S satisfies I ′ with equality, we may assume y ∈ S. Hence S \ {z}
satisfies Condition 2 of Proposition 5.9.4 with respect to I .

h 
= a and h 
= b: (However one of a, b may be f .) We have to consider
several subcases namely a) a, b ∈ S and y, z /∈ S, b) a, z ∈ S and
y, b /∈ S and c) b, y ∈ S and a, z /∈ S. It is easy to see that in each of
these cases a feasible set for condition 2 is at hand. As S satisfies I ′

with equality, the only remaining cases are a) y ∈ S and a, b, z /∈ S
and b) z ∈ S and a, b, y /∈ S. Then S \{y} and S \{z} fulfill condition
2 in their respective cases.

Lemma 5.9.14 (Theorem 5.9.8 and Proposition 5.9.4 commute).
Assume that the vertex v of a graph G fulfills the conditions of Theo-
rem 5.9.8 with respect to G and the facet defining inequality aT x ≤ α.
Furthermore assume, that the edge {u, w} fulfills the assumptions of Propo-
sition 5.9.4 with the particular set S and au ≥ aw and aT x ≤ α is not the
edge inequality xu + xw ≤ 1.

1. Let G′ be the graph constructed as in Theorem 5.9.8 from v. Then
G′ fulfills the conditions of Proposition 5.9.4 for {u, w} (if u, w are
adjacent in G′) or otherwise for {u, w′} or {u′, w} with respect to
āT x ≤ ᾱ.
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2. Let G′′ be the graph constructed as in Proposition 5.9.4 from {u, w}
and āT x ≤ ᾱ the corresponding inequality. Then G′′ fulfills the con-
ditions of Theorem 5.9.8 for v with respect to āT x ≤ ᾱ.

Proof. For the first part we have to distinguish the three cases:
Case u, w 
= v: First notice that āu = au ≥ aw = āw. If w ∈ N then

v /∈ S and thereby S ∪{v} does the job. If w /∈ N then depending on
v ∈ S or v /∈ S either (S \ {v}) ∪ {v′

1, v
′
2, . . . , v

′
k+1} or S ∪ {v} does

the job (as nothing in the neighborhood of w is changed).
Case w = v (and u ∈ N): Say u = vi. Let wnew = v′

i. Now notice that
deg(wnew) = 2. With the remark after Proposition 5.9.4 this shows,
that the conditions of Proposition 5.9.4 are satisfied.

Case u = v (and w ∈ N): Say w = vi. Let unew = v′
i. Notice that 1 =

āunew = au ≥ aw = āw. Because of u = v it follows v ∈ S. Now
(S \ {v}) ∪ {v′

1, v
′
2, . . . , v

′
k+1} does the job.

For the second part, notice first that the subdivision of {u, w} with y, z
(thereby creating the path u − y − z − w) cannot change the coefficient
of v from 1 to anything wrong. So validity is already guaranteed. If u, w
are not adjacent to v then the sets S̃i need to be augmented only with y
or z to make them incident with the facet of āT x ≤ ᾱ. If u and/or w are
adjacent to v then still every set can be augmented with either y or z to
keep it in the face āT x ≤ ᾱ. If finally u or w is v (say u = v) then the sets

S̃i that do not contain w can be augmented with z without disturbing the
neighborhood of v while maintaining incidence with āT x ≤ ᾱ. For sets S̃i

that do contain w we can augment with y and the new set intersects the
neighborhood of v only in y.

The Lemmas 5.9.12, 5.9.13 and 5.9.14 are summarized by the next The-
orem.

Theorem 5.9.15.
If for a graph G = (V, E) with a facet inducing inequality aT x ≤ b, a set
W ⊆ V and a multiset F ⊆ E are given so that at every vertex of W star
subdivision could be applied and every edge of F could be doubly subdivided,
then all of these feasible operations can be carried out in arbitrary order
while creating at the same time a sequence of facet inducing inequalities
for the intermediate graphs and the final graph. Notice however, that while
doing these operations some edges in the intermediate graphs disappear.
(As they might be either doubly subdivided, or they might be incident with
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a vertex that is star subdivided.) But in the process of disappearing, they
are replaced by an edge or vertex, that permits again subdivision. So it is
only necessary, to rename elements of F and W while subdividing related
vertices or edges.

5.9.5. Interaction of Adding an Apex and Other Operations.
Next we study Gv with respect to the subdivision procedures if we know
that they were applicable to G.

Lemma 5.9.16 (Lifting of Theorem 5.9.8).
Let G = (V, E) be a graph and aT x ≤ α be a nontrivial valid inequality. Let
v be a vertex of G and N = {v1, . . . , vk} be the neighbor set of v where k ≥
1. Let G′ = Gvk+1 . Extend the vector a (according to Proposition 5.9.3) to
G by a′

u = au for all u ∈ V and a′
vk+1 = α.

1. If (G, v, aT x ≤ α) fulfills the conditions of Theorem 5.9.8, part 1 then

(G′, v, a′T x ≤ α) does.
2. If (G, v, aT x ≤ α) additionally fulfills the conditions of Theorem 5.9.8,

part 2 then (G′, v, a′T x ≤ α) does.

Furthermore, if (Gvk+1 , v, a′T x ≤ α) with a′
vk+1 = α fulfills the condi-

tions of Theorem 5.9.8 part 1 and/or part 2 and a′T x ≤ α is not a 3-cycle
inequality then (G, v, aT x ≤ α) does.

Proof. Validity and facetness of a′T x ≤ α follow directly from Propo-
sition 5.9.3. For part 1 there is nothing to show. For part 2 we know

that for i = 1, . . . , k, there exists a stable set S̃i such that aT xS̃i = α and
S̃i ∩ N = {vi}. We set S̃′

i = S̃i for i = 1, . . . , k and S̃′
k+1 = {vk+1}. Obvi-

ously, the conditions of part 2 are fulfilled for i = 1, . . . , k. For i = k + 1

the facts a′T xS̃′
k+1 = α and S̃′

k+1 ∩ N = {vk+1} are not more difficult.
For the other direction, note that part 1 is easy, while for part 2 it suffices,

that all the S̃′
i carry over from G′ to G (except the one corresponding to

vk+1).

Lemma 5.9.17 (Lifting of Proposition 5.9.4).
Let G = (V, E) be a graph, aT x ≤ α be a nontrivial facet defining inequality
and {u, v} is an edge of G. If the condition 2 of Proposition 5.9.4 is fulfilled
for (G, aT x ≤ α, u, v) then conditions 1 and 2 of Proposition 5.9.4 are also

fulfilled for the graph G′ = Gw, the inequality aT x = a′T x+ αxw ≤ α and

the vertices u, v. Furthermore, if (Gw, u, v, a′T x ≤ α) with aw = α fulfills
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the conditions 1 and 2 of Proposition 5.9.4 and a′T x ≤ α is not a 3-cycle
inequality then (G, u, v, aT x ≤ α) does.

Proof. Validity and facetness of a′T x ≤ α follows by Proposition 5.9.3
from these properties for aT x ≤ α. Consider the stable set S′ = {w}.
Notice a′T xS′

= α and xS′
u = xS′

v = 0. So condition 1 of Proposition 5.9.4
is satisfied. Condition 2 is verified for G′ with the same set which fulfills
it for G.
For the converse direction notice that the two required sets directly carry

over from G′ to G.

Lemma 5.9.18 (subdivision of the spokes).
Let G = (V, E) be a graph, aT x ≤ α be a facet defining inequality and u is
a vertex of G so that the inequality is not xu ≤ 1. Then conditions 1 and
2 of Proposition 5.9.4 are also fulfilled for the graph Gw together with the

inequality a′T x = ax+ αxw ≤ α and the edge {u, w}.

Proof. Validity and facetness are easy again. As a′
w ≥ a′

u the stable
set S = {w} does the job. Furthermore, the new inequality is not an edge
inequality, because the old inequality was not the constraint xu ≤ 1.

Lemma 5.9.19.
Let A be an (n, t)-antiweb and IA the corresponding inequality for A. Then
all edges of type not greater than n mod t fulfill condition (2) of Proposi-
tion 5.9.4. All other edges (those of type greater then n mod t) violate
condition (2).

Proof. Consider a rim-edge of type d ≤ (n mod t), say {v1, vd+1} and
let f =

�
n
t

�
. Obviously, ft + d ≤ n. We claim that the set S = {v1} ∪

{vd+1+t, vd+1+2t, . . . , vd+1+(f−1)t} is stable and fulfills condition (2) with
respect to I. Regarding the stability it is easy to see that the second part
of S is stable; it remains to verify that there is no edge between that part
and v1. But the latter is easy, as v1 is adjacent only to its t − 1 successors
(and they are not in S) and the t− 1 predecessors; for this notice, that the
last element vd+1+(f−1)t of S could only be in conflict with with v1 but
the neighbor of vd+1+(f−1)t being closest to v1 is the vertex vd+1+ft which
is—as a consequence of ft+d ≤ n—distinct from v1. Therefore S is stable.
Regarding condition (2) notice that the neighbors of vd+1 which are not
permitted to be in S are {vd+1−(t−1), vd+1−(t−2), . . . , vd} \ {v1} ∪ {v0} ∪
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{vd+2, vd+3, . . . , vd+t}. The second and third part of the set are definitely
not in S, for the vertices in the first part notice that if d+1− (t− 1) ≤ 0,
then it corresponds to d + 1 − (t − 1) + n ≥ (f − 1)t + 2d + 2 which is
greater than d+ 1 + (f − 1)t and if d+ 1− (t − 1) > 0 (that is d > t − 2)
then follows together with t > d that d = t− 1 and d+1− (t− 1) = 1, but
we do not have to care about v1.
Finally, consider a rim-edge of type d > (n mod t) and set f =

�
n
t

�
,

hence ft + d > n. Without loss of generality assume that the rim-edge is
the edge {v1, vd+1}. We want to construct a stable set S � v1 which fulfills
additionally condition (2). Hence some vertices cannot be in S and the
only choices besides v1 for S belong to {vd+1+t, vd+1+t+1, . . . , vn+1−t} (the
number of the last element is determined by the minimum distance of t
from v1 = vn+1). We need to choose f − 1 vertices; if there is a solution,
then the remaining elements can be {vd+1+t, vd+1+2t, . . . , vd+1+(f−1)t}. But
the vertex vd+1+(f−1)t does not belong to the set of candidates, as d+1+
(f −1)t > n+1− t. So this rim-edge of type d > (n mod t) can never fulfill
condition (2).

Corollary 5.9.20.
Let A be an (n, t)-antiweb, k a nonnegative integer and I

A
v01 ,v02 ,...,v0k the

corresponding inequality for G = Av01 ,v02 ,...,v0k . Then all edges of A of
type not greater than n mod t fulfill condition (2) of Proposition 5.9.4 with
respect to G. All other edges of A (those of type greater than n mod t)
violate condition (2) for G.

Proof. The proof is done by induction on k. Lemma 5.9.19 estab-
lishes the base-case of k = 0. So assume that the theorem is proved for
(Av01 ,v02 ,...,v0k , I

A
v01 ,v02 ,...,v0k ). Lemma 5.9.17 establishes the claim then

for (A
v01 ,v02 ,...,v0k+1 , I

A
v01 ,v02 ,...,v0k+1 ).

Lemma 5.9.21.
Let G be an (n, t)-antiweb with n 
≡ 0 mod t and let v be a vertex of G. For
the facet

�n
i=1 xi ≤ �n

t
� the following two statements are equivalent :

1. n ≡ t − 1 mod t and
2. v fulfills the assumptions 1 and 2 of Theorem 5.9.8.

Proof. Let k = �n
t
�. For the first implication (hence n = k ∗ t+ t − 1)

we can assume without loss of generality (by symmetry) that v = t. Now

we will construct the stable sets S̃i for all neighbors of i. Let S′ = {3t −
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1, 4t − 1, . . . , n}. Notice, aT xS = k − 1 and S contains no neighbor of

t, t + 1, . . . , 2t − 1. Finally for i with t < i < 2t the sets S̃i = S′ ∪ {i} are
stable and fulfill aT xSi = k. For the second halve of necessary sets consider
S′′ = {2t, 3t, . . . , kt} and use for i with 0 < i < t the sets S̃i = S′′ ∪ {i}.
For the other direction again we can assume without loss of generality

that vertex v = t. As the assumptions are fulfilled, there is a stable set

S̃ with S ∩ {1, 2, . . . , 2t − 1} = {2t − 1} and aT xS̃ = k. So S̃ contains k

elements. Choosing vertices of as small number as possible, S̃ must be
{2t − 1, 3t − 1, . . . , (k + 1)t − 1}. This requires that n ≥ (k + 1)t − 1 and
finally n ≡ t − 1 mod t.

Together, Lemmas 5.9.21 and 5.9.16 imply the next corollary.

Corollary 5.9.22.
Let A be an (n, t)-antiweb with n 
≡ 0 mod t, let k be a nonnegative in-
teger and let v be a vertex of A. Consider Av01 ,v02 ,...,v0k . For the facet
I

A
v01 ,v02 ,...,v0k : �n

t
��k

i=1 x0i +
�n

i=1 xi ≤ �n
t
� of STAB(Av0) the follow-

ing two statements are equivalent :
1. n ≡ t − 1 mod t and
2. v fulfills the assumptions 1 and 2 of Theorem 5.9.8.

Together, the results 5.9.16 – 5.9.22 of this subsection can be summarized
by the next theorem.

Theorem 5.9.23.
Let A be an (n, t)-antiweb with n 
≡ 0 mod t and let k be a nonnega-
tive integer. Let G = Av01 ,v02 ,...,v0k and the corresponding inequality
I

A
v01 ,v02 ,...,v0k : �n

t
��k

i=1 x0i+
�n

i=1 xi ≤ �n
t
�. Then the following hold:

1. Every spoke can be doubly subdivided.
2. Star subdivision at a vertex v ∈ A is applicable in G if and only if

n ≡ t − 1 mod t.
3. An edge e of A can be doubly subdivided in G if and only if its type

is at most n mod t.

5.10. Facetness of Antiweb-Wheels

In this section we put together the composition results of the preced-
ing sections to get a complete characterization of facet inducing proper
antiweb-wheel inequalities. The inequalities of the graphs of type Av0 of
Section 5.9 are an example of this new class. For the reader’s convenience
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Definition 5.5.1 from Section 5.5 is reproduced here to facilitate easy ref-
erence.

Definition 5.10.1 (antiweb-1-wheel).
Given an (n, t)-antiweb G1 = (V1, E1) with n 
≡ 0 mod t, given a partition
E ,O of V1 = {1, 2, . . . , n}. Consider a subdivision G of Gv0

1 . Let P0,i denote
the path obtained from subdividing the edge {v0, vi} and let Pi,j (for vi, vj

adjacent in G1) denote the path obtained from subdividing the edge {vi, vj}.
This graph G is a simple antiweb-1-wheel if the following four conditions
are fulfilled:

1. the length of P0,i is even for i ∈ E and odd for i ∈ O,
2. the length of the path Pi,j is even for i ∈ E and j ∈ O or j ∈ E and

i ∈ O,
3. the length of the path Pi,j is odd for i, j ∈ O, and
4. the length of the path Pi,j is odd for i, j ∈ E .

A simple antiweb-1-wheel is proper if additionally Pi,j is of length at
least 2 for all paths with at least one end in E . A proper antiweb-1-wheel
is basic with respect to a given partition E ,O if all the involved paths have
minimal length.

Theorem 5.10.2 (validity of the (n, t)-antiweb-1-wheel inequality).
Given an (n, t)-antiweb-1-wheel G, the inequality

(5.10)
�n

t

�
x0 +

�
i∈O

xi + (2t − 2)
�
i∈E

xi +
�

v∈S∪R
xv

≤
�n

t

�
+ (2t − 2)|E|+ |S|+ |R| − (2t − 1)|E|

2

is valid for STAB(G), where S denotes the set of internal vertices of the
spoke-path and R denotes the set of internal vertices of the subdivided
antiweb edges.

Proof. As a starting point we utilize the validity of IAv0 :
�n

i=1 xi +

�n
t
��k

i=1 x0i ≤ �n
t
� for Av0 from Theorem 5.9.23. Then we do star subdi-

vision at all vertices of E ; here Theorem 5.9.8, Number 1 guarantees that
validity is maintained. If in the antiweb-wheel we want to reach there are
paths of length 1 between members of E then the paths of length 3 between
them can be doubly contracted by Lemma 5.9.7. If finally between some
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spoke-ends longer paths are necessary, they can be produced by applying
edge-subdivision, that maintains validity according to Lemma 5.9.5.

Theorem 5.10.3 (proper antiweb-1-wheel facets for n ≡ t − 1 mod t).
Given a proper (n, t)-antiweb-1-wheel G with n ≡ t − 1 mod t then the
inequality (5.10) induces a facet of STAB(G).

Proof. We will first show that the theorem is true for basic (n, t)-
antiweb-1-wheels. Given an (n, t)-antiweb-1-wheel Hv0 star subdivision
is applicable to every vertex of H in Hv0 and double-edge subdivision is
applicable to every edge of H in Hv0 with respect to

�n

t

�
x0 +

�
i∈H

xi ≤
�n

t

�
(5.11)

by Theorem 5.9.23. Furthermore, all spokes of Hv0 could be doubly sub-
divided.
By Theorem 5.9.15 we can carry out the star subdivision at all vertices

of E in Hv0 with respect to inequality (5.11). This leads to the desired
facet of the basic (n, t)-antiweb-1-wheel H ′; the inequality can be written
as �n

t

�
x0 +

�
i∈O

xi + (2t − 2)
�
i∈E

xi +
�

v∈S∪R
xv ≤

�n

t

�
+ (2t − 2)|E|.

By Theorem 5.9.15 we can finally doubly subdivide the remaining edges
(as necessary) and prove thereby the desired facet in general.

Theorem 5.10.4 (proper antiweb-1-wheel facets (1 ≤ (n mod t) ≤ t − 2)).
Given a proper antiweb-1-wheel G with n ≡ a mod t, 1 ≤ a ≤ t − 2. Then
inequality (5.10) induces a facet of the corresponding stable set polytope if
and only if

1. E = ∅ and
2. all paths Pi,j with {i, j} of type > a and i, j ∈ O have length 1.

Proof. The proof that 1 and 2 imply facetness is the same as that in
Theorem 5.10.3, except that no star subdivision is done, and only edges of
type ≤ n mod t are doubly subdivided (as necessary), while edges of type
> n mod t are not doubly subdivided (as they do not fulfill the prerequisites
of double edge-subdivision).
For the forward direction consider an arbitrary but proper (n, t)-antiweb-

wheel G′ with partition E∪̇O that is facet-inducing for STAB(G′). First
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we want to apply Proposition 5.9.6 to shorten paths of length 3 to edges
while maintaining facetness in the following way:

• paths Pi,j of type > a and of length > 3 are shortened until their
length is 2 or 3;

• paths Pi,j of type < a with both ends in E are shortened down to
length 3;

• paths Pi,j of type < a with at most one end in E are shortened down
to length 1 or 2;

• spoke-paths are shortened down to length 1 or 2.
Denote with G the resulting graph. Now if G′ violates condition 1 or 2
then G does, as we did not change E at all and even though we shortened
the subdivided paths, we took care that paths violating condition are not
changed in any way.
Now consider a sequence of undoing star subdivisions and shortening

paths of length 3 to edges to reduce G to an unsubdivided (n, t)-antiweb-
wheel H . Notice, that by Lemma 5.9.11 the inequality after undoing a
single star subdivision is again facet inducing. By Proposition 5.9.6 follows
similarly that the inequality after shortening a path is facet inducing.
Now consider the last intermediate graph in this sequence H ′. By The-

orem 5.9.23 we know that neither star subdivision nor double-edge sub-
division are applicable to H ′. If the last operation is an star subdivision,
then by Lemma 5.9.10 it follows that going from H to H ′ by star subdivi-
sion destroys facetness, that is the inequality for H ′ is not facet inducing
contrary to assumption. If on the other hand the last operation is doubly
subdividing an edge of type > a then by the remark after Proposition 5.9.4
and the fact that we have a facet for H ′ we obtain that that edge does not
violate condition (2) giving again a contradiction.

The construction of starting with an antiweb then adding an apex, doing
star subdivision and then doubly subdividing the edges can be generalized
by adding more (or no) apex. For the reader’s convenience Definition 5.7.1
from Section 5.7 is reproduced here to facilitate easy reference.

Definition 5.10.5 (antiweb-s-wheel).
Let s ≥ 0. Given an (n, t)-antiweb G1 = (V1, E1) with n 
≡ 0 mod t, given
a partition E ,O of the set of vertices of V1 = {1, 2, . . . , n}. Consider a

subdivision G of G
v01 ,v02 ,...,v0s
1 . Let P0i,j denote the path obtained from

subdividing the edge {v0i , vj} and let Pi,j (for vi, vj adjacent in G1) denote
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the path obtained from subdividing the edge {vi, vj}. This graph G is a
simple antiweb-s-wheel if the following four conditions are fulfilled:

1. for all 1 ≤ i ≤ s is the length of P0i,j even for j ∈ E and odd for
j ∈ O,

2. the length of the path Pi,j is even for i ∈ E and j ∈ O or j ∈ E and
i ∈ O,

3. the length of the path Pi,j is odd for i, j ∈ O, and
4. the length of the path Pi,j is odd for i, j ∈ E .

A simple antiweb-s-wheel is proper if additionally Pi,j is of length at
least 2 for all paths with at least one end in E . A proper antiweb-s-wheel
is basic with respect to a given partition E ,O if all the involved paths have
minimal length.

Theorem 5.10.6 (validity of the (n, t)-antiweb-s-wheel inequality).
For s ≥ 0 and an (n, t)-antiweb-s-wheel G the inequality

(5.12)
�n

t

� s�
i=1

x0i +
�
i∈O

xi + (2t − 3 + s)
�
i∈E

xi +
�

v∈S∪R
xv

≤
�n

t

�
+ (2t − 3 + s)|E|+ |S|+ |R| − (2t − 2 + s)|E|

2

is valid for STAB(G), where S denotes the set of internal vertices of the
spoke-path and R denotes the set of internal vertices of the subdivided
antiweb edges.

Proof. As a starting point, we utilize the validity of

�n

t

� k�
i=1

x0i +

n�
i=1

xi ≤
�n

t

�
(IA

v01 ,v02 ,...,v0k )

for Av01 ,v02 ,...,v0k from Theorem 5.9.23. Then we do star subdivision at
all vertices of E ; here Theorem 5.9.8, Number 1 guarantees that validity
is maintained. The degree of every vertex in E is (2t − 2) + s, where the
first term accounts for the neighbors in the antiweb and the second term
for the neighborly hubs. So if star subdivision is applied at a vertex v ∈ E
then (2t − 2) new rim vertices and s spoke vertices are added of weight 1.
The weight of v is changed to 2t − 3 + s (= deg v − 1) and the right hand
side is incremented by 2t− 3+ s. This is accomplished in inequality (5.12)
by the coefficient 2t − s + 3 of

�
i∈E xi, the term

�
v∈S∪R xv and for the



168 Antiwebs and Antiweb-Wheels for Stable Set Polytopes

right hand side the term (2t−3+s)|E|. Actually this operation subdivided
also the spokes and cross-edges incident with v, thereby the term |S|+ |R|
on the right hand side is increased by (2t−2+s)|E| so we need to subtract
the same amount to balance this effect.
If in the antiweb-wheel we want to reach there are paths of length 1

between members of E then the paths of length 3 between them can be
doubly contracted by Lemma 5.9.7. Every contraction step changes the
inequality in that the two terms xu and xw corresponding to vertices
contracted away are dropped on the left hand side of the inequality (as
u, w are removed from S or R) and at the same time the right hand side
decreases by two.
If finally between some spoke-ends longer paths are necessary, they can

be produced by applying edge-subdivision, that maintains validity accord-
ing to Lemma 5.9.5. Again, the new inequality is of type (5.12).

As the question of validity is now settled for antiweb-s-wheels we turn
next to the question of facetness.

Theorem 5.10.7 (proper antiweb-s-wheel facets for n ≡ t − 1 mod t).
Given a proper (n, t)-antiweb-s-wheel G with n ≡ t − 1 mod t the inequal-
ity (5.12) induces a facet of STAB(G).

Proof. We will first show that the theorem is true for basic (n, t)-
antiweb-s-wheels. Given an (n, t)-antiweb-s-wheel Hv01 ,v02 ,...,v0s star sub-
division is applicable to every vertex ofH inHv01 ,v02 ,...,v0s and double-edge
subdivision is applicable to every edge of H in Hv01 ,v02 ,...,v0s with respect
to

�n

t

� s�
i=1

x0i +
�
i∈H

xi ≤
�n

t

�
(5.13)

by Theorem 5.9.23. Furthermore, all spokes of Hv01 ,v02 ,...,v0s could be
doubly subdivided.
By Theorem 5.9.15 we can carry out the star subdivision at all vertices

of E in Hv01 ,v02 ,...,v0s with respect to inequality (5.13). This leads to the
desired facet of the basic (n, t)-antiweb-s-wheel H ′; the inequality can be
written as

�n

t

� s�
i=1

x0i +
�
i∈O

xi + (2t − 2)
�
i∈E

xi +
�

v∈S∪R
xv ≤

�n

t

�
+ (2t − 2)|E|.
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By Theorem 5.9.15 we can finally doubly subdivide the remaining edges
(as necessary) and prove thereby the desired facet in general.

Theorem 5.10.8 (proper antiweb-s-wheel facets (1 ≤ (n mod t) ≤ t − 2)).
Given a proper (n, t)-antiweb-1-wheel G with n ≡ a mod t, 1 ≤ a ≤ t −
2. Then inequality (5.12) induces a facet of the corresponding stable set
polytope if and only if

1. E = ∅ and
2. all paths Pi,j with {i, j} of type > a and i, j ∈ O have length 1.

Proof. The proof that 1 and 2 imply facetness is the same as that in
Theorem 5.10.7, except that no star subdivision is done, and only edges of
type ≤ n mod t are doubly subdivided (as necessary), while edges of type
> n mod t are not doubly subdivided (as they do not fulfill the prerequisites
of double edge-subdivision).
For the forward direction consider an arbitrary but proper (n, t)-antiweb-

s-wheel G′ with partition E∪̇O that is facet-inducing for STAB(G′). First
we want to apply Proposition 5.9.6 to shorten paths of length 3 to edges
while maintaining facetness in the following way:

• paths Pi,j of type > a and of length > 3 are shortened until their
length is 2 or 3;

• paths Pi,j of type < a with both ends in E are shortened down to
length 3;

• paths Pi,j of type < a with at most one end in E are shortened down
to length 1 or 2;

• spoke-paths are shortened down to length 1 or 2.
Denote with G the resulting graph. Now if G′ violates condition 1 or 2
then G does, as we did not change E at all and even though we shortened
the subdivided paths, we took care that paths violating condition 2 are not
changed in any way.
Now consider a sequence of undoing star subdivisions and shortening

paths of length 3 to edges to reduce G to an unsubdivided (n, t)-antiweb-
wheel H . Notice, that by Lemma 5.9.11 the inequality after undoing a
single star subdivision is again facet inducing. By Proposition 5.9.6 follows
similarly that the inequality after shortening a path is again facet inducing.
Now consider the last intermediate graph in this sequence H ′. By The-

orem 5.9.23 we know that neither star subdivision nor double-edge sub-
division are applicable to H ′. If the last operation is an star subdivision,
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then by Lemma 5.9.10 it follows that going from H to H ′ by star subdivi-
sion destroys facetness that is, the inequality for H ′ is not facet inducing
contrary to assumption. If on the other hand the last operation is doubly
subdividing an edge of type > a then by the remark after Proposition 5.9.4
and the fact that we have a facet for H ′ we obtain that that edge does not
violate condition (2) giving again a contradiction.

So we have a complete characterization of the facet defining proper
antiweb-s-wheels.

5.11. Improper Antiweb-Wheels

The next natural question is: “How about the improper antiweb-
wheels?” We would like to know too...
The only difference between proper and improper antiweb-wheels is the

requirement that for proper ones every path emanating from a vertex of
E must have length at least two. So every improper antiweb-wheel has a
path between two members of E of length 1 (instead of 3 for proper ones).
We have never observed any improper antiweb-1-wheel facet. So we believe
that they are indeed never facet inducing.
As a stepping-stone for this puzzle we give the next lemma.

Lemma 5.11.1 (the induced C5).
Consider the stable set problem on a graph G(V, E) and a facet-inducing
inequality aT x ≤ α. Let G′ = (V ′, E′) be the support graph of aT x ≤ α
in G. Then G′ does not contain an induced 5-cycle C = {v1, v2, v3, v4, v5}
where vertices v2, v4 have degree 2 in G′ and for the vertex v1 holds that
its weight (with respect to a) is higher than the sum of the weights of its
neighbors not in C.

Proof. We prove the theorem, by showing, that if such a 5-cycle exists
then the face aT x = α is contained in the face induced by the 5-cycle
inequality. So consider a stable set S with aT xS = α. Denote with b the
characteristic vector of the odd 5-cycle C. We want to prove that bT xS = 2
for all stable sets with aT xS = α. Suppose aT xS = α and bT xS = 0, then it
is easy to see, that the set S′ = S∪{v2, v4} fulfills aT xS > α contradicting
the validity of aT x ≤ α for all stable sets.
Suppose next aT xS = α and bT xS = 1. This requires |C ∩ S| = 1.

Without loss of generality we can assume C ∩ S ⊂ {v1, v2, v3}. If C ∩ S ⊂
{v1, v2} then S′ = S ∪ {v4} violates aT x ≤ α. So it remains to study
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C ∩ S = {v3}. Either S ∪ {v1} or S ∪ {v5} is stable (and then violates
aT x ≤ α) or both are not stable, because S contains neighbors of v1 and
v5 outside of C. Now consider the set S′ = (S \N(v1))∪ {v1}. Again, S′ is
stable. But, as the sum of the weights of the neighbors of v1 outside of C

is smaller than av1 we learn aT xS′
> aT xS = α, contradicting the validity

of aT x ≤ α.

This theorem helps to weed out many of the antiweb-wheels that are not
facet inducing as demonstrated by the following corollary.

Corollary 5.11.2.
Let G be an improper antiweb-s-wheel (s ≥ 1) with partition E ,O and
corresponding antiweb-1-wheel inequality IG. Let H = G[E ]. If H contains
a vertex of degree 1 then IG is not facet inducing.

Proof. Consider a vertex u ∈ E of degree 1 and its unique neighbor
w ∈ E and assume that the IG nevertheless induces a facet. Without loss
of generality we can assume that the spoke-paths from u, w to the hub
have length two (otherwise we could shorten them with Proposition 5.9.6).
Consider the C5 induced by u, w the edge between them and their two
spoke paths. Now notice that u has weight 2t − 3 + s and it has only
(2t − 2 + s) − 2 neighbors outside of this C5; all of these (2t − 2 + s) − 2
neighbors have weight 1. So we might conclude that by the Lemma 5.11.1
the valid inequality does not define a facet, contrary to assumption.

5.12. Generalizations and Remarks

Using well-known transformations, one gets the valid inequalities cor-
responding to the new inequalities of this chapter for the cut polytope,
as performed for the wheel inequalities for example by Cheng [Che98];
from the cut polytope they carry over to the boolean quadric polytope as
demonstrated by De Simone [Sim90]. Similarly, they could be utilized for
the multiwaycut problem [BTV95]. But, in fact, the connection between
stable set, max-cut, and boolean quadric problems is deeper and holds
not only for the polytopes but also for their semi-definite relaxations, see
Laurent, Poljak, and Rendl [LPR97].





CHAPTER 6

Partial Substitution for Stable Set
Polytopes

We introduce the new graph operation of partial substitution which gen-
eralizes Chvátal’s notion of substitution of a graph. Using partial substi-
tution we show how to derive new facets of the stable set polytope of the
graph from known facets of some of its subgraphs. These facets were not
previously known. Furthermore, we show for one example class of facets
that a superclass of these facets can be separated in polynomial time. We
also discuss the relation between partial substitution and a composition
defined by Cunningham.

6.1. Introduction

In this chapter the facial consequences of composing two graphs together
with (some) known facets are studied. The classical result in this direction
is by Chvátal [Chv75], that if a full linear description for the stable set
polytopes of two graph G1, G2 is known then a (possibly non-minimal)
linear description of the stable set polytope of G2 substituted into a vertex
of G1 can be easily constructed.
As an application of some interesting extended formulations in [BW97]

Borndörfer and Weismantel (see also [Bor97, Chap. 2]) give the new class
of odd cycle of odd cycles inequalities. This class composes the pattern
‘odd cycle’ with itself; they prove its validity by ‘aggregation’ and its
facetness by a custom-made procedure. The odd cycle of odd cycles is
not a substitution in the sense of Chvátal, but these operations are very
similar. This motivated us to introduce and study the partial substitution
for graphs. Partial substitution is a generalization of Chvátal’s [Chv75]
substitution and is powerful enough to explain facetness for odd cycle of
odd cycles and even some further generalizations, see Theorem 6.3.11. It
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is similar to the composition studied by Cunningham in [Cun82]. But our
results are complementary to Cunningham’s in that while he was able to
describe a set of faces which contained all facets, it remained unknown
which of these faces were the facets; by contrast, all faces we construct are
proven facets, but we do not know how to generate all facets.

6.2. Preliminaries

As STAB(G) is down monotone (that is x ∈ STAB(G) and 0 ≤ y ≤ x
implies y ∈ STAB(G)), we know that every of its facets aT x ≤ f, where
a ≤ 0, is of the form −xi ≤ 0. Therefore, the interesting (non trivial) facets
all have a � 0. They will be the main subject of our study.
Next we introduce a new graph-theoretic operation, the partial substitu-

tion. The partial substitution was devised as a generalization of Chvátal’s
graph substitution [Chv75]. The relation between composition [Cun82] and
partial substitution is further discussed in Section 6.4.

Definition 6.2.1 (Partial Substitution).
Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with V1 ∩ V2 = ∅. Choose a
subset L of V2 and a vertex v of V1. The partial substitution of G2 with L
into G1 at v (partial substitution of (G2, L) in (G1, v), for short), denoted
by (G1, v) � (G2, L), is the graph G = (V, E) with V = V1 \ {v} ∪ V2 and

E = E2 ∪ {e ∈ E1 : v /∈ e} ∪ {{u, w} : {u, v} ∈ E1 and w ∈ L} .

For example, if L = V2 we get the familiar graph substitution of [Chv75];
his theorem about the faces of the stable set polytope reads (slightly
changed):

Theorem 6.2.2 (Chvátal [Chv75], Thm. 5.1).
Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with V1 ∩ V2 = ∅. For
k ∈ {1, 2}, let

−xu ≤ 0 (u ∈ Vk)�

u∈Vk

aiuxu ≤ fi (i ∈ Jk)

be a defining linear system of STAB(Gk) where Jk and ai are defined
suitable. Scale the inequalities with j ∈ J2 such that fj = 1. Let v be
a vertex of G1 and let G = (G1, v) � (G2, V2). For each i ∈ J1, set
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Figure 6.1. The graphs (G1, v0) and (G2, L) and the
partial substitution (G1, v) � (G2, L).

a+
iv = max{aiv, 0}. Then

− xu ≤ 0 (u ∈ V2 ∪ (V1 \ {v}))
a+

iv

�

u∈V2

ajuxu +
�

u∈V1\{v}
aiuxu ≤ fi (i ∈ J1, j ∈ J2)(6.1)

is a defining linear system of STAB(G).

For a ‘real’ application of partial substitution we give the next example:

Example 6.2.3.
Consider the two graphs G1 and G2 (= C5) in the left part of Figure 6.1.
Let V1 = {v1, v2, v3, v4, v5, v0}, E1 = {{v1, v2}, {v2, v3}, {v3, v4}, {v4, v5},
{v5, v1}} ∪ {{vi, v0} : 1 ≤ i ≤ 3} , V2 = {v6, v7, v8, v9, v10}, and E2 =
{{v6, v7}, {v7, v8}, {v8, v9}, {v9, v10}, {v10, v6}} . Let L = {v6, v7, v8}. The
graph obtained when L of G2 is substituted for v0 in G1, is depicted in
the right part of Figure 6.1. Notice that this graph cannot be obtained by
substitution of smaller graphs.

The goal of this section is to construct new facets of STAB((G1, v) �
(G2, L)) from the knowledge of facets of STAB(G1) and STAB(G2).

6.3. Partial Substitution for Facets of Stable Set Polyhedra

In this section we will study different types of facets of STAB((G1, v) �
(G2, L)). In the following, we always assume that nontrivial facet defin-
ing inequalities aT

1 z1 ≤ f1 and aT
2 z2 ≤ f2 are given for STAB(G1) and

STAB(G2), respectively.
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A set L ⊂ V2 will be called an essential set for (a2, f2) if for all stable
sets U ⊆ (V2 \ L) the inequality

aT
2 zU

2 ≤ f2 − 1(6.2)

is valid (zU
2 denotes the characteristic vector of the set U) and such that

there is a stable set W with aT
2 zW

2 = f2 and aT
2 zW∩L

2 = 1 (this might
require proper scaling of (a2, f)). Define b2 = zW

2 . Hence for all stable sets
U of G2 with aT

2 zU
2 = f2 follows L(zU

2 ) ≥ 1, where L(z2) is defined by
L(z2) =

�
i∈L a2iz2i.

Now we are prepared to give the main class of new facets.

Theorem 6.3.1 (Facets of Type 1).
Let
�

u∈V1
a1uxu ≤ f1 be a facet defining inequality of STAB(G1) with

a1v 
= 0; let
�

u∈V2
a2uxu ≤ f2 with f2 > 0 be a facet defining inequality

of STAB(G2) (properly scaled) such that L is an essential set for (a2, f2).
Assume that both are nontrivial (a1, a2 ≥ 0). Then

a1v

�

w∈V2

a2wxw +
�

w∈V1\{v}
a1wxw ≤ a1v (f2 − 1) + f1(6.3)

defines a facet of STAB((G1, v) � (G2, L)).

Proof. Let a denote the coefficient vector of the left hand side of in-
equality (6.3), while f denotes the right hand side. Notice aw = a1w for
w ∈ V1 \ {v} and aw = a1va2w for w ∈ V2. The validity of this inequality
is a consequence of the aggregation technique of Borndörfer and Weisman-
tel [BW97] (see also [Bor97, Chap. 2]). For the sake of completeness we give
a direct proof here. As G2 is an induced subgraph of G = (G1, v) � (G2, L)
the inequality

�

w∈V2

a2wxw ≤ f2(6.4)

is valid for STAB (G) and by the same reason
�

w∈V1\{v}
a1wxw ≤ f1(6.5)

is valid for STAB (G1 − v) . Now we have to show that inequality (6.3)
is valid for all incidence vectors zU of stable sets U of G. We have to
distinguish two cases depending on U ∩L. If U ∩L = ∅ then L(xU ) = 0 and
therefore a1v

�
w∈V2

a2wzU
w ≤ a1v(f2 − 1). Adding this inequality to (6.5)
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proves a1v

�
w∈V2

a2wxU
w +
�

w∈V1\{v} a1wxU
w ≤ a1v (f2 − 1) + f1. But

if U ∩ L 
= ∅ then the set (U ∩ V1) ∪ {v} is stable in G1. Using (6.5):

aT
1 z

(U∩V1)∪{v}
1 ≤ f1 and aT

1 z
(U∩V1)∪{v}
1 = aT

1 z
(U∩V1)
1 + a1v we obtain the

following strengthening:
�

w∈V1\{v} a1wzU∩V1
1w ≤ f1 − a1v. Adding this

to (6.4) yields a1v

�
w∈V2

a2wxU
w +
�

w∈V1\{v} a1wxU
w ≤ a1v (f2 − 1) + f1.

For the proof of facetness we will assume, that there is another valid
and facet-defining inequality cT x ≤ c0 which defines a facet of STAB(G)
containing the face F defined by (6.3) and then we will show that cT x ≤ c0

can only be a positive multiple of aT x ≤ f. Denote with F1 and F2 the
faces induced by

�
u∈V1

a1uxu ≤ f1 and
�

u∈V2
a2uxu ≤ f2 of STAB(G1)

and STAB(G2) , respectively.
In a first step in the proof of facetness we will show that cj = const · aj

for all j ∈ V2. In the second step we will extend this result to all j ∈ V.
Let B1 be a matrix whose column vectors are vertices of F1 and mini-

mally span F1. The matrix B2 is defined analogously. For z1 ∈ B1 (here
we consider B1 as a set of column vectors) and z2 ∈ B2 we define (z

T
1 , zT

2 )
T

as the concatenation of the two vectors, where the component of z1 with
index v is dropped. Let b1 be a vertex of F1 with b1v = 1.
Notice, that (z1, z2) ∈ F ∩ {0, 1}|V1 |+|V2|−1 (for z1 ∈ B1 and z2 is the

incidence vector of a stable set in G2) is equivalent either to z1v = 1 (and
z2 ∈ F2 arbitrary) or to z1v = 0, L(z2) = 0 and aT

2 z2 = f2 − 1.
So choose j, j′ ∈ V2 such that a2j 
= 0. Notice, that f2

a2j
ej ∈ aff F2 =

aff B2. Hence there exists a real vector λ, indexed by elements of B2, with�
z2∈B2

λz2z2 =
f2
a2j

ej and
�

z2∈B2
λz2 = 1. Recall that (b

T
1 , zT

2 )
T ∈ F for

all z2 ∈ B2. Now let x =
�

z2∈B2
λz2(b

T
1 , zT

2 )
T ∈ F.

Similar, if a2j′ 
= 0 then there exists λ′ with
�

z2∈B2
λ′

z2z2 =
f2

a2j′
ej′ and

�
z2∈B2

λ′
z2 = 1. Let x′ =

�
z2∈B2

λ′
z2(b

T
1 , zT

2 )
T ∈ F.

As x, x′ ∈ F we know that cT x = c0 and cT x′ = c0 and thereby
cT (x − x′) = 0. But notice that x − x′ = f2

a2j
ej − f2

a2j′
ej′ . Hence we obtain

0 = cT (x − x′) = cj
f2
a2j

− cj′
f2

a2j′
and finally cj′ =

cj

a2j
a2j′ .

If on the other hand a2j′ = 0 then f2
a2j

ej + ej′ ∈ aff F2 and there

exists λ′ with
�

z2∈B2
λ′

z2z2 = f2
a2j′

ej′ + ej′ and
�

z2∈B2
λ′

z2 = 1. Let

x′ =
�

z2∈B2
λ′

z2(b
T
1 , zT

2 )
T ∈ F.

As x, x′ ∈ F we know that cT x = c0 and cT x′ = c0 and thereby
cT (x − x′) = 0. But notice that x − x′ = ej′ . Hence we obtain cj′ = 0 and
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thereby cj′ =
cj

a2j
a2j′ . So we have shown for the first step cj′ =

cj

a2j
a2j′

and hence

cj′ =
cj

aj
aj′ .

For the second—and last—step let b2 be the incidence vector of a stable
set W with aT

2 zW
2 = f2 and aT

2 zW∩L
2 = 1. Let cv =

�
w∈L b2wcw. We want

to show that all ci for i ∈ V1 \ {v} are equal to cv
a1v

ai. (Of course, by the

first step we have for a j ∈ V2 with aj 
= 0 that cv
a1v

=
cj

aj
.)

For z1 ∈ B1 we define Π(z1, b2) by

(Π(z1, b2))i =

��
�

0 : if i ∈ L and z1v = 0,
b2i : if i ∈ L and z1v = 1, and
zi : if i ∈ V1 \ {v}.

Notice that for all z1 ∈ B1 follows Π(z1, b2) ∈ F.

Since a1v > 0 the vector f1
a1v

ev belongs to F1. Hence there exists an affine

combination λ with
�

z1∈B1
λz1z1 =

f1
a1v

ev. Let x =
�

z1∈B1
λz1Π(z1, b2).

Choose j′ ∈ V1 \ {v}. Again, there exists an affine combination λ′ with�
z1∈B1

λ′
z1z1 either equal to

f1
a1j′

ej′ (if a1j′ 
= 0) or equal to f1
a1v

ev+ej′ (if

a1j′ = 0); let x′ =
�

z1∈B1
λ′

z1Π(z1, b2). Now we can exploit cT x−cT x′ = 0

to obtain cj′ =
cv

a1v
a1j′ .

With the two steps we have succeeded now in proving for any fixed
j ∈ V2 with aj 
= 0 (and such j exists, as L(b2) 
= 0) that (c, c0) =
cj

aj
(a, f). As claimed

cj

aj
is nonnegative, since otherwise the right hand side

of the facet defining inequality cT x ≤ f would be strictly negative which
is impossible.

The next theorem shows that facets of STAB(G1) with a1v = 0 carry
over to STAB((G1, v) � (G2, L)).

Theorem 6.3.2 (Facets of Type 2).
Let
�

u∈V1
a1uxu ≤ f1 be a facet defining inequality of STAB(G1) with

a1v = 0. Let
�

u∈V2
a2uxu ≤ f2 be an arbitrary valid inequality of

STAB(G2). Then

a1v

�
w∈V2

a2wxw +
�

w∈V1\{v}
a1wxw ≤ a1v (f2 − 1) + f1(6.6)

defines a facet of STAB((G1, v) � (G2, L)).
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Remark 6.3.3.
Notice that due to a1v = 0 the inequality (6.6) actually reads

�
u∈V1

a1uxu

≤ f1 and the particular choice of (a2, f2) does not matter. But this notation
permits a simple way to state Theorem 6.3.5 later.

Proof of Theorem 6.3.2. As G1−{v} (which contains the support of
a1) is an induced subgraph of (G1, v)�(G2, L) validity follows immediately.
Since inequality (6.6) induces a facet of STAB(G1), there exists a full-
rank matrix B of those column vectors which belong to STAB(G1) and
fulfill (6.6) with equality. Furthermore, B contains a column b with bv = 0
and another one c with cv = 1. Assume, without loss of generality that
the last row of B corresponds to v. Let b′ and c′ be the vectors b and c,
respectively, where the last row is deleted. Notice that for u ∈ V2 \ L the
vectors b′+eu correspond to stable sets of (G1, v)�(G2, L). The same holds
for c′+ ew for all w ∈ L. Furthermore, these b′+ eu and c′+ ew fulfill (6.6)
with equality, as do all columns of B (expanded with some zeroes). Now we
can write down all these vectors (assuming that the first rows correspond
to V1 \ {v} the next to L and the last ones to V2 \ L):

Bnew =

�
�������������

c′ · · · c′ b′ · · · b′
B

0 · · · 0
0|L|,|V2|−|L|

0|L|−1,|V1| I|L|−1,|L|−1

0|V2|−|L|,|V1| 0|V2|−|L|,|L|−1 I|V2|−|L|,|V2|−|L|

�
�������������

As B has full rank and the remaining matrix has only nonzeros on and
above the diagonal, and on the diagonal are only 1’s we can conclude that
Bnew has full rank and hence the inequality (6.6) induces indeed a facet of
STAB((G1, v) � (G2, L)).

Next we study the case of an inequality
�

w∈V2
a2wxw ≤ f2 for which L

is never essential.

Theorem 6.3.4 (Facets of Type 3).
Let

�
w∈V2

a2wxw ≤ f2 be a facet defining inequality of STAB(G2) and

there is no scaling of a2 such that L is an essential set for a2. (Hence there
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exists a stable set U ⊆ V2 \ L with
�

w∈V2
a2uxU

w = f2.) Assume that the

inequality is nontrivial (that is a2 ≥ 0). Then
�

w∈V2

a2wxw ≤ f2(6.7)

defines a facet of STAB((G1, v) � (G2, L)).

Proof. As G2 is an induced subgraph of (G1, v)�(G2, L) validity follows
directly. As inequality (6.7) induces a facet of STAB(G2), there exists a
full-rank matrix B of those column vectors which belong to STAB(G2) and
fulfill (6.7) with equality. Furthermore, as L is not essential for any scaling
of aj , there exists a stable set U ⊆ V2 \ L of G2 with

�
w∈V2

a2wxU
w = f2.

Let b2 = xU . Observe, that U ∪ {u} for any u ∈ V1 \ {v} is a stable set of
(G1, v) � (G2, L) and the corresponding incidence vector fulfills (6.7) with
equality. Therefore, all column vectors of the matrix

B′ =

�
�������

0|V1|−1,|V2| I|V1|−1,|V1|−1

B b2 · · · b2

�
�������

correspond to stable sets of (G1, v) � (G2, L). Notice that, as B′ has full
rank, the inequality (6.7) defines a facet of STAB((G1, v) � (G2, L)).

The previous three theorems can immediately be used to strengthen the
theorem of Chvátal in the following way:

Theorem 6.3.5.
Consider the same assumptions as in Theorem 6.2.2 with the additional
requirement that all given faces are facets. It follows that all constructed
faces are facets.

For a graph G and a set L ⊆ V (G) we denote with G[L] = (V ′, E′) the
subgraph of G induced by L, where V ′ = L and E′ = {{u, v} ∈ E : u, v ∈
L}.

Theorem 6.3.6 (Facets of Type 4).
Let

�
w∈V1

a1wxw ≤ fi be a facet defining, nontrivial inequality of

STAB(G1) and
�

w∈L a2wxw ≤ 1 be a facet defining, nontrivial inequality
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of STAB(G2[L]). Then

aiv

�

u∈L

ajuxu +
�

u∈V1\{v}
aiuxu ≤ fi(6.8)

defines a facet of STAB((G1, v) � (G2, L)).

Proof. Notice that L is essential for a2. With Theorem 6.3.1 follows
immediately, that (6.8) is valid and facet defining for STAB((G1, v) �
(G2[L], L)). As (G1, v) � (G2[L], L) is an induced subgraph of (G1, v) �
(G2, L) validity of (6.8) for STAB((G1, v)�(G2, L)) is a direct consequence.
Let B be a quadratic matrix of those zero-one column-vectors, which are
in STAB((G1, v) � (G2[L], L)) and fulfill (6.8) with equality, such that B
has full rank. Let w ∈ V1 be a neighbor of v in G1. There must be a vector
b in B with bw = 1, otherwise B would be contained in the plane xw = 1.
Notice that, as bw = 1, b is the incidence vector of a stable set, and all
elements u ∈ L are neighbors of w in (G1, v) � (G2[L], L) and therefore for
all u ∈ L holds bu = 0.
Let U be the stable set corresponding to b. Notice that for all t ∈ V2 \L

the set U ∪ {t} is stable in (G1, v) � (G2, L) and the incidence vectors
fulfill (6.8) with equality. Hence the columns of the following matrix B′

belong to STAB((G1, v) � (G2, L)) and fulfill (6.8) with equality.

B′ =

�
�������

B b · · · b

0|V2|−|L|,|V1| I|V2|−|L|,|V2|−|L|

�
�������

Notice that B′ has full rank.

In this section we described four classes of facets for the stable set
polytope of a graph (G1, v) � (G2, L). In particular, the first three classes
of facets generalize the facets of Chvátal [Chv75, Theorem 5.1].
The next natural question is, whether these four classes constitute al-

ready a defining system for STAB((G1, v) � (G2, L)). Unfortunately, this is
not true as we demonstrate in the following remark.
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Remark 6.3.7.
Observe, that there are graphs G, sets L, and valid (not facet-defining)
inequalities aT x ≤ f for STAB(G) which are not implied by other facet-
defining, essential inequalities. Consider for example the graph

P4 = G ({1, 2, 3, 4}, {{1, 2}, {2, 3}, {3, 4}})
and L = {1, 4}. Notice that the inequality x1+x2+x3+x4 ≤ 2 is valid but
not facet-defining for STAB(P4) and that L is essential for this inequality.
The only nontrivial facets of STAB(P4) are

x1 + x2 ≤ 1

x2 + x3 ≤ 1

x3 + x4 ≤ 1.

However, L is not essential for any of these four facets.
For example, if we partially substitute P4 with {1, 4} into a K2 then the

resulting graph is a C5 (for which we know that the rank inequality defines
a facet) while the rank inequality is not of any of the previously described
types. So there are still more facets.

Finally, we show how to apply Theorem 6.3.1 iteratively so as to prove
facetness of a generalization of the odd cycle of odd cycles inequalities of
Borndörfer and Weismantel [BW97]. Additionally, we show that a super-
class of these inequalities can be separated in polynomial time.

Theorem 6.3.8 (Iterative application of Theorems 6.3.1, 6.3.2).
Let
�

u∈V0
a0uxu ≤ f0 be a facet defining inequality of STAB(G0); fix a

number m and a set {v1, v2, . . . , vm} of vertices of G0. Let m additional
graphs G1, G2, . . . , Gm be given, which have mutually disjoint vertex sets
and choose for all i ∈ {1, 2, . . . , m} sets Li ∈ Vi. For i ∈ {1, 2, . . . , m}
choose facet defining inequalities

�
u∈Vi

aiuxu ≤ fi of STAB(Gi) such that

Li is essential. Finally, assume that all inequalities are nontrivial. Then

(6.9)
m�

i=1

a0vi

�

w∈Vi

aiwxw +
�

w∈V0\{v1,v2,...,vm}
a0wxw

≤
m�

i=1

a0vi(fi − 1) + f0

defines a facet of STAB((· · · (((G0, v1) � (G1, L1), v2) � (G2, L2), v3) · · ·
� (Gm, Lm))).
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Proof. The proof is by inductively showing, that (for m′ = 1, 2, . . . , m)

m′�

i=1

a0vi

�

w∈Vi

aiwxw +
�

w∈V0\{v1,v2,...,vm′}
a0wxw ≤

m′�

i=1

a0vi(fi − 1) + f0

defines a facet of STAB((· · · (((G0, v1) � (G1, L1), v2) � (G2, L2), v3) · · ·
� (Gm′ , Lm′ )). Notice that the case m′ = 1 is a direct application of
Theorem 6.3.1 (if a0vm′ 
= 0) or of Theorem 6.3.2 (if a0vm′ = 0). The
induction step is also a direct application of Theorem 6.3.1 or of Theo-
rem 6.3.2 (depending on a0vm′+1

).

As a shortcut in the case of m = |V0| we write G0((G1, L1), (G2, L2), . . . ,
(Gm, Lm)) = (· · · (((G0, v1)�(G1, L1), v2)�(G2, L2), v3) · · ·�(Gm, Lm). For
simplicity of notation, we will consider the graph C0 = ({1}, ∅) an odd hole
like the other odd holes C2k+1 for k ≥ 1. For C0 the odd hole constraint O0

is x1 ≤ 1 while for the C2k+1 the odd hole constraint Ok is
�2k+1

i=1 xi ≤ k.

If P is an even path and subgraph of C2k+1 then P is essential for 2
|P |−1

Ok

if k ≥ 1. If k = 0 (and thereby |P | = 1) then P is essential for O0. The
independence number α(G) of a graph G is the size of a maximal stable set
in G. Notice α(C2k+1) = k for k ≥ 0 and α(C0) = 1. Thereby, we obtain
for odd l and an even subpath P of Cl that P is essential for 1

α(P )
OCl .

Definition 6.3.9 (odd hole of odd holes).
A graph G shall be called odd hole of odd holes if there exists a nat-
ural number m ∈ �, odd holes G0, G1, . . . , Gm, where G1, G2, . . . , Gm

contain even (length) paths L1, L2, . . . , Lm such that G is isomorphic to
G0((G1, L1), (G2, L2), . . . , (Gm, Lm)). The odd hole of odd holes G shall be
called simple if Vi and Vj are disjoint for 1 ≤ i < j ≤ m. The order of the
odd hole of odd holes shall be the number max1≤i≤m |Li|.

Remark 6.3.10.
For an example of a simple odd hole of odd holes (of order 5) see Fig-
ure 6.2. Furthermore, notice that the (less general) cycle of cycles intro-
duced in [BW97] are all odd hole of odd holes of order 3.
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Theorem 6.3.11.
For a simple odd hole of odd holes G = G0((G1, L1), (G2, L2), . . . , (Gm,
Lm)) the inequality

m�

i=1

�

w∈Vi

1

α(Li)
xw ≤

m�

i=1

�
α(Gi)

α(Li)
− 1
�
+ α(G0)(6.10)

is valid and facet defining for STAB(G).

Proof. The proof is a simple application of Theorem 6.3.8 and the
observation, that Li is essential for

1
α(Li)

times the odd-hole constraint of

Gi.

Theorem 6.3.12.
For an odd hole of odd holes G = G0((G1, L1), (G2, L2), . . . , (Gm, Lm)) the
inequality

m�
i=1

�
w∈Vi

1

α(Li)
xw ≤

m�
i=1

�
α(Gi)

α(Li)
− 1
�
+ α(G0)(6.11)

is valid for STAB(G).

Proof. Consider first the graph G′ = G0((G
′
1, L

′
1), (G

′
2, L

′
2), . . . , (G

′
m,

L′
m)) where Gi and G′

i are isomorph; they differ only in that the isomor-
phisms are chosen to ensure that the different Gi are disjoint. For this
graph the inequality (6.11) (properly relabeled for the graph G′) is valid.
Now notice that

ESTAB(G) =

ESTAB(G′) ∩
�

v′∈V ′
i ,w′∈Vj with v=w

{x ∈ [0, 1]|V (G′)| | xv′ = xw′}.

As validity is maintained under intersecting with hyperplanes, the inequal-
ity (6.11) is additionally valid for G.

Similarly, a K2 of odd holes and a K2 of odd cycles can be defined.

Definition 6.3.13 (K2 of odd holes).
A graph G shall be called K2 of odd holes if there exists two odd holes
G1, G2 containing even (length) paths L1, L2 such that G is isomorphic
to K2((G1, L1), (G2, L2)). The order of the K2 of odd holes is again the
number max1≤i≤m |Li|.
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The following theorem is proved similarly as Theorems 6.3.11 and 6.3.12.

Theorem 6.3.14.
For K2 of odd holes G = G0((G1, L1), (G2, L2)) the inequality

2�

i=1

�

w∈Vi

1

α(Li)
xw ≤

2�

i=1

�
α(Gi)

α(Li)
− 1
�
+ 1(6.12)

is valid for STAB(G). If the configuration is simple the valid inequality is
additionally facet inducing.

Theorem 6.3.15 (Polynomial separation).
The separation problem whether a given x ∈ ESTAB(G) violates any K2

of odd holes or odd hole of odd holes inequalities of order ≤ k, where k is
an arbitrary constant, can be solved in polynomial time.

Proof. (The proof is similar to but a lot more general than the proof
given in [BW97].) Assume a graph G(V, E) and a (fractional) vector x∗ ∈
ESTAB(G) are given. Consider the set V of all even paths (= paths of even
length) of size at most k (|V| = O(|V |k)). On the set V we want to define
a graph G(V, E). Two vertices L1, L2 of G are adjacent, iff all vertices of
L1 are adjacent to all vertices of L2 in G, that is G[L1 ∪ L2] ⊃ K|L1|,|L2|.
To assign weights wLi to each vertex Li of G we calculate the shortest odd
(length) path P in G that connects the two ends of Li with respect to the
length function

luv =
1− x∗

u − x∗
v

2

for all adjacent u, v in G. Denote with Ci the odd cycle P ∪Li. Finally, we
can define the weight function of G for |Li| ≥ 3 by

wLi =
1

α(Li)

�
w∈Ci

x∗
w −
�

α(Ci)

α(Li)
− 1
�

and for |Li| = 1 by wLi = x∗
Li

.
Now we can check whether the edge inequalities in G are violated.

If any violated edge inequality is found, it corresponds to a maximally
(with respect to the vertices in G) violated K2 of odd cycles inequal-
ity; this inequality can be returned. But if all edge inequalities are ful-
filled in G, a standard algorithm can be used to find an odd cycle C0

in G which violates an odd-hole constraint. If such a cycle exists, say
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V (G0) = {1, 2, . . . , m}, then the inequality of the odd hole of odd holes
G0((G1, L1), (G2, L2), . . . , (Gm, Lm)) is violated.
To see, why the inequality of the odd hole of odd holes G0((G1, L1),

(G2, L2), . . . , (Gm, Lm)) is violated, assume, that the odd cycle constraint
of G0 is violated by ε, that is:

�m
i=1 wLi = α(G0) + ε. Now we can expand

the left hand side of the last equation to obtain

m�

i=1

�
� 1

α(Li)

�
w∈Gi

x∗
w −

�
α(Gi)

α(Li)
− 1
��
�

=
m�

i=1

1

α(Li)

�
w∈Gi

x∗
w −

m�
i=1

�
α(Gi)

α(Li)
− 1
�

.

This implies
m�

i=1

1

α(Li)

�
w∈Gi

x∗
w =

m�
i=1

�
α(Gi)

α(Li)
− 1
�
+ α(G0) + ε.

Hereby, we have demonstrated that the odd hole of odd holes inequality is
indeed violated.
For the other direction, we have to assume that x∗ violates a non-

simple odd hole of odd hole inequality of order ≤ k. Then we can study of
course a most violated inequality of this type, say G0((G1, L1), (G2, L2),
. . . , (Gm, Lm)). Assume, that this inequality is violated by ε. First it is
important to notice that the path joining the ends of Li in Gi but avoiding
internal vertices of Li has the same length as P, for otherwise that path
could be replaced by P thereby giving a more violated inequality. Now we
can look at the length of the cycle corresponding to G0 in G. Reversing
the argument of the preceding paragraph demonstrates that the cycle-
inequality corresponding to G0 in G is violated by ε.

6.4. Relation to Cunningham’s Composition

Denote with N(v) the set of neighbors of v in a given graph. Now we
want to study the relation of partial substitution to a composition defined
by Cunningham [Cun82].

Definition 6.4.1 (Composition).
Let G1 = (V1, E1) and G2 = (V2, E2) be graphs with V1 ∩ V2 = ∅. Choose
vertices v1 ∈ V1 and v2 ∈ V2 with N(v1) 
= ∅ 
= N(v2). The composition of
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Figure 6.2. A simple odd hole of odd holes of order 5.

(G1, v1) and (G2, v2), denoted by (G1, v1)�(G2, v2), is the graph G = (V, E)
with V = (V1 ∪ V2) \ {v1, v2} and E = {e ∈ E1 : v1 /∈ e} ∪ {e ∈ E2 : v2 /∈
e} ∪ {{u, w} : u ∈ N(v1) and w ∈ N(v2)}, where N(v1) and N(v2) denote
the sets of neighbors of v1 in G1, v2 in G2, respectively.

For given complete linear descriptions of STAB(G1) and STAB(G2)
a complete linear description of STAB((G1, v1)�(G2, v2)) is constructed
in [Cun82]. But whether this linear complete description is minimal is un-
known. Denote with NG1(v1) the neighborhood of v1 in G1. Now it is an
easy observation, that

(G1, v1)�(G2, v2) = (G1, v1) � (G2 − v2, NG2(v2))

= (G2, v2) � (G1 − v1, NG1(v1)).

Let K2 = ({1, 2}, {{1, 2}}) then we can state the relation the other way
around:

(G1, v) � (G2, L) = (G1, v)�((K2, 2) � (G2, L), 1).(6.13)

So the question arises, where the polyhedral difference between �—
where a complete linear description is known, but that description might
contain non-facets—and �—where some facets can be constructed, but not
all—stems from. We think the major difficulty lies in Equation (6.13). As
demonstrated in Remark 6.3.7 the step in Equation (6.13) where the knowl-
edge of a complete linear description is lost is the step from STAB(K2)
and STAB(G2) to STAB(K2, 2) � (G2, L)). So going from STAB(G2, v2) to
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STAB(G2 − v2) is the step, where crucial information is lost. But on the
other hand, after this step we are left in circumstances under which we can
describe many facets.
All theorems developed here for stable set polyhedra can also be proved

in the broader way of independence system polyhedra.



CHAPTER 7

Exact Algorithms for Discrete
Tomography

In this chapter we compare two different optimization models for recon-
struction problems in discrete tomography. Both models were proposed in
the literature and their computational complexities were studied. Though
both models have their benefits and applications, they were never practi-
cally compared with respect to their utility for solving the reconstruction
problem posed by measurements from HRTEM. We compare two different
data-scenarios and two solvers. First we will describe the different models;
then briefly give the solution programs. For the metric to compare their
performance, we do not compare their speed, but more fundamentally we
compare how much information can be recovered from the data sets. For
this we generate a random configuration (under the chosen model) and
next compute another solution (fulfilling all equations) that is as different
from the initial configuration as possible. Clearly, those models where this
maximal unlikeness (more formally: the maximal symmetric difference) is
smaller are (if their assumptions are applicable to the concrete situation)
better. Even though for most models configurations do exist so that the
reconstruction is unique, we think that by drawing random configurations
we get a good empirical picture of their differences. One outcome of these
experiments is that one model permits surprisingly different looking recon-
structions; this might be very undesirable in some applications.
The results of this chapter are joint work with Peter Gritzmann. Fur-

thermore we thank Jens Zimmermann for helping with coding the data-
structures underlying our algorithms.
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7.1. A Formulation for Unrestricted Problems

The basic reconstruction problem of discrete tomography as stated in
the system of Equations (3.1) (Chapter 3) will be written in this chapter
as Ax = b and x ∈ {0, 1}n×n. A most different solution to a given solution
x̂—that is a solution with maximal symmetric difference to the underlying
configuration of x̂—can be simply described as an optimal solution to the
system

max
n�

i=1

n�

j=1

(1− x̂ij) · xij

subject to

Ax = b(7.1a)

x ∈ {0, 1}n×n.(7.1b)

Notice, that if we speak of coordinates (i, j) (as for example in xij)
the first coordinate describes the projection onto the abscissa, the second
coordinate describes the projection onto the ordinate. We do not interpret
(i, j) as indices of a matrix, but as coordinates!

7.2. A Formulation for Line-Convex Problems

Different variants of the unconstrained reconstruction problem are found
in the literature. One variant is the reconstruction problem for polyomi-
noes [BLNP96]. For polyominoes the additional requirement is that the
set of atoms is connected. Two cells are adjacent, if they are next to each
other along a coordinate direction.
Other requirements are about different notions of convexity. For convex

lattice sets there are theorems in [GG97] that show that every convex lattice
set is uniquely determined by suitable 4 and arbitrary 7 X-rays in pairwise
non-parallel coplanar lattice directions. However, it is unknown whether
the corresponding reconstruction problem is solvable in polynomial time or
not. But it appears, that for our applications of HRTEM to semiconductor-
samples requiring convexity of the sample (and the solutions) is too much
to ask for. One can think of the objects of interest as wafers only a few
hundred atoms thin, which, to begin with, had polished surfaces and then
were subject to different etching processes. It is the accuracy of this etching
(and related manipulations) that we want to examine. So, even though the
object was perhaps convex in the beginning, in the end it is not.
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But as we think of it as part of a very large wafer and the etching
is performed only from above, it seems reasonable to assume (as a first
approximation) that every line that is (almost) perpendicular to the surface
of the wafer, intersects the wafer in an interval. If this property holds for
all lines of a given direction, the object is called line-convex with respect
to this direction.

Definition 7.2.1.
A finite set F ⊂ �3 (�2) is called line-convex with respect to a direction l
if all translates of l intersect F in an interval. In particular, it is called
h-convex(v-convex) if it is line-convex with respect to (1, 0, 0) ((0, 1, 0)).

Barcucci, Del Lungo, Nivat, and Pinzani [BLNP96] show that the re-
construction problem for h-convex sets with two directions is ��-hard.
Similarly, Woeginger [Woe96] shows that the 2-direction reconstruction of
sets which are h- and v-convex is ��-hard.
The ��-hard problem most close to the ��-hard/� border is the problem

of h-convex reconstruction for two directions. It is the most simple, yet
realistic formulation for our application to problems with convexity along
one direction. On the other hand it is the simplest difficult problem. For
simplicity of notation, we will study this problem on a 2-dimensional n×n
grid with the directions (1, 0) and (0, 1).
We will assume, that the data are given as n row sums (rj =

�n
i=1 xij)

and n column sums (ci =
�n

j=1 xij) where xij encodes the occupancy

status (= 1 if there is an atom at position (i, j) and = 0 if there is not an
atom) of the candidate position (i, j). We say that a vector (xi)

n
i=1 has the

strict consecutive ones property if {i : xi = 1} = {l, l + 1, . . . , u} for some
l, u ∈ �.

h-convex-Reconstruction.

Instance: A number n ∈ � and two n-vectors r, c ∈ �
n .

Output: An element x̄ ∈ {0, 1}n×n fulfilling the constraints
rj =

�n
i=1 xij and ci =

�n
j=1 xij so that for every

j the vector (x̄ij)
n
i=1 has the strict consecutive

ones property.

An initial approach to formulate this problem as a binary integer pro-
gram is to write it as a feasibility problem for:

Ax = b,(7.2a)
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(xij)
n
i=1 has the strict consecutive ones property for every j,(7.2b)

and

x ∈ {0, 1}n×n(7.2c)

where A encodes the incidence of the candidate points with the horizontal
and vertical lines. However, the h-convexity constraint (7.2b) is not linear
(yet).
A first way to obtain a truly integer linear description of h-convex prob-

lems is to replace the h-convexity constraint (7.2b) in the preceding prob-
lem by constraint (7.3b) in the following system of inequalities

Ax = b,(7.3a)

xi1j + xi3j − xi2j ≤ 1 for all i1 < i2 < i3 and all j,(7.3b)

0 ≤ xij ≤ 1 for i = 1, 2, . . . , n and for j = 1, 2, . . . , n,(7.3c)

and

x ∈ {0, 1}n×n.(7.3d)

Denote the convex hull of the solutions of (7.3) by Plc,1 and its LP-
relaxation (determined by (7.3a), (7.3b), and (7.3c)) Qlc,1. The formula-
tion (7.3) gives an integer linear feasibility problem. But it has the major
drawback that even for a problem with a single line that is line-convex
the corresponding polytope Qlc,1 has fractional vertices even though it is
of course a trivial task to put the given number of atoms in a line-convex
fashion onto that single line. Another disadvantage of this formulation is
the very large (though polynomial) number of inequalities. It appears that
the main reason for these difficulties is that the encoding of the solution
is too sparse. The number of ones in a row of the problem encode the
placement of the atoms, but this encoding also permits, in the first place,
solutions that are not h-convex. Only later the requirement of h-convexity
is added. So it seems more natural to look for a denser encoding, that
directly takes care of the h-convexity of the solutions.
Notice, that to describe a solution it suffices to describe the positions

where the intervals (in the convex h-direction) start. So we try to use the
scheduling variables yij defined by

yij =

���
��

1 if the convex interval on the horizontal line j

starts at position i,

0 otherwise.
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In other words, yij = 1 means that the atom at position (i, j) and the atoms
at the rj − 1 positions to the right of (i, j) are selected. These variables
permit a linear way of describing the h-convex-Reconstruction for this
problem by the requirements:

n�

i=1

yij =

�
0 if rj = 0

1 otherwise
for j = 1, 2, . . . , n(7.4a)

n�
j=1

i�
k=i−(rj−1)

ykj = ci for i = 1, 2, . . . , n,(7.4b)

0 ≤ yij ≤ 1 for i = 1, 2, . . . , n and j = 1, 2, . . . , n,(7.4c)

and

y ∈ {0, 1}n×n.(7.4d)

For (i, j) outside the square [1, n] × [1, n] we set yij = 0. For brevity let

fi(y) =
�n

j=1

�i
k=i−(rj−1) ykj and denote the convex hull of solutions

of (7.4) by Plc,2 and its LP-relaxation (determined by (7.4a), (7.4b), and
(7.4c)) with Qlc,2. A simple observation is that yij = 0 for j = 1, 2, . . . , n
and i = n − (rj − 2), . . . , n. Therefore, it holds that dimPlc,2 ≤ n2 −�n

j=1(rj − 1).
It is natural to ask about the relation between Plc,1 and Plc,2. It turns

out that they are isomorphic under the following linear maps. Define
Π21 : Plc,2 
−→ Plc,1 by

(Π21(y))ij =

i�
k=max(1,i−(ri−1))

yij

and Π12 : Plc,1 
−→ Plc,2 by

(Π21(x))ij = (xij − xi−1,j) +
�
xi−rj,j − xi−rj−1,j

�
+ . . . .

Now it is easy to prove Π12 (Plc,1) = Plc,2 and Π21 (Plc,2) = Plc,1.
Instances with rj = r for all j = 1, . . . , n and ci = c for all i = 1, . . . , n are

called homogeneous and instances with rj = r for all j = 1, . . . , n are called
called row-homogeneous. Row-homogeneous instances with the additional
property that the sequence of ci’s is not increasing (that is ci ≥ ci+1 for
i = 1, 2, . . . , n − 1) are called wedges.

Theorem 7.2.2.
The polytope Qlc,2 is integral for h-convex wedge instances.
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Proof. If c1 = 0 then ci = 0 for all 1 ≤ i ≤ n and the problem has a
trivial solution. So we can assume c1 > 0.
We claim that the polytope Qlc,2 is contained in the linear subspace

n�
j=1

�
i�≡1modr

{y : yij = 0}.

Consider an arbitrary solution ȳ. Notice that fi(ȳ) ≥ f1(ȳ) for i =
1, 2, . . . , r. But as the sequence of ci is nonincreasing this implies that�r

i=2

�n
j=1 ȳij = 0. As ȳ is nonnegative it follows that ȳij = 0 for

i = 2, 3, . . . , r and j = 1, 2, . . . , n. Now one can continue this proof-step
for i = r+1 and i = r+2, r+3, . . . , 2r and so on. So we have shown that

Qlc,2 ⊆
n�

j=1

�
i�≡1modr

{y : yij = 0}.

With these observations we can specialize the description of Qlc,2 to

�
1≤i≤n

i≡1modr

yij =

�
0 if rj = 0

1 otherwise
for j = 1, 2, . . . , n,(7.5a)

n�
j=1

yij = ci for 1 ≤ i ≤ n and i ≡ 1 mod r,(7.5b)

yij = 0 for 1 ≤ i ≤ n and i 
≡ 1 mod r and

0 ≤ yij ≤ 1 for 1 ≤ i ≤ n and 1 ≤ j ≤ n.(7.5c)

Now notice that the matrix corresponding to the free variables is the
node-edge incidence matrix of the Kn,n, therefore it is totally unimodu-
lar (by an easy consequence of the characterization of totally unimodular
matrices by Ghouila-Houri [GH62, main theorem]) and the system (7.5) is
integral for all instances of wedge-type. (In the special case, that r = ci = 1
for all 1 ≤ i ≤ n the system (7.5) describes an embedding of the Birkhoff
polytope into a coordinate plane of a higher-dimensional space. As it is
well-known (cf. Birkhoff [Bir46, first theorem] and von Neumann [Neu53,
Lemma 2]) that the Birkhoff polytope is integral, we can conclude that
Qlc,2 is integral.)

Theorem 7.2.3.
The h-convex-Reconstruction problem can be solved in polynomial time
for h-convex row-homogeneous instances.
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Proof. For this proof we will replace the constraints (7.4b) by simpler
but equivalent constraints. Notice that

fi(y)− fi−1(y) =

n�

j=1

yij −
n�

j=1

yi−r,j .

Let c′i = 0 for −r + 1 ≤ i ≤ 0 and c′1 = c1. Now define successively
c′i = ci − ci−1 + c′i−r . Suppose that we have proved

�n
j=1 yij = c′i for

i ≤ k − 1 (and we have done this for k = 2) then we want it to hold also
for k. Then we have by the assumption

fk(y)− fk−1(y) +

n�

j=1

yk−r,j = ck − ck−1 + c′k−r

= c′k.

On the other hand we have by the previous observation that

fk(y)− fk−1(y) +

n�

j=1

yk−r,j =

n�

j=1

ykj −
n�

j=1

yk−r,j +

n�

j=1

yk−r,j

=

n�

j=1

ykj

Similarly, it is easy to see, that the system

n�

j=1

yij = c′i for i = 1, 2, . . . , n(7.4b’)

implies the system of Equations (7.4b). So the polytope Qlc,2 is also
determined by the system of inequalities determined by (7.4a), (7.4b’),
and (7.4c). But the matrix of this reformulation is again (as in the proof of
Theorem 7.2.2) totally unimodular, whereby the corresponding polytope
is integral.

For the computational solution of h-convex-Reconstruction prob-
lems the formulation (7.4) is unfortunately ill suited, as the number of
nonzeros in it is already O(n∗�n

j=1 rj) for instances with 2 directions, while

the formulation for non-line-convex reconstruction requires only O(n2). As�n
j=1 rj usually grows at O(n2) the solution times of the LP-relaxation of

this formulation are large. But the observation that the constraints (7.4b)
are very similar for i − 1 and i provides a way to a sparser integer linear
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program. For this we need to calculate fi(y) − fi−1(y). Obviously, the
following holds

fi(y)− fi−1(y) =

n�

j=1

yij −
n�

j=1

yi−rj ,j .(7.6)

Notice that the constraint (7.4b) has
�

i ci non-zeroes (up to boundary
effects) while the constraint (7.6) has only 2n non-zeroes. Furthermore the
constraint f1(y) = 0 also has at most n non-zero coefficients. Hence we
can reformulate the integer linear program (7.4) into

n�
i=1

yij =

�
0 if rj = 0

1 otherwise
for j = 1, 2, . . . , n(7.7a)

�
1≤j≤n
rj>0

y1j = c1(7.7b)

n�
j=1

yij −
n�

j=1

yi−rj ,j = ci − ci−1 for i = 2, 3, . . . , n,(7.7c)

0 ≤ yij ≤ 1 for i = 1, 2, . . . , n and for j = 1, 2, . . . , n,(7.7d)

and

y ∈ {0, 1}n×n.(7.7e)

Again it is possible to formulate the uniqueness problem for h-convex
instances.

h-convex-Uniqueness.

Instance: A number n ∈ � and x̂ ∈ {0, 1}n×n.

Output: An x̄ ∈ {0, 1}n×n fulfilling for i = 1, 2, . . . , n
and j = 1, 2, . . . , n the constraints

�n
i=1 xij =�n

i=1 x̂ij and
�n

j=1 xij =
�n

j=1 x̂ij so that for ev-

ery j the vector (x̄ij)
n
i=1 has the strict consecutive

ones property and x̄ 
= x̂.

This problem has a particularly easy formulation after the given solution
is transformed into ŷ-variables and r and c are computed.
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max
n�

i=1

n�

j=1

yij

n�

k=1

|i − k|ŷkj

n�

i=1

yij =

�
0 if rj = 0

1 otherwise
for j = 1, 2, . . . , n,(7.8a)

n�
j=1

i�
k=i−(rj−1)

ykj = ci for i = 1, 2, . . . , n,(7.8b)

0 ≤ yij ≤ 1 for i = 1, 2, . . . , n and for j = 1, 2, . . . , n,(7.8c)

and

y ∈ {0, 1}n×n.(7.8d)

7.3. Comparison of the Models

To do a comparison, we implemented programs in C++ that solve prob-
lems (7.1) and (7.8). These programs are based on our class-library for
problems of discrete tomography and on CPLEX 6.5 [ILO97]. The first
program computes, for a given configuration a most different solution by
solving the integer linear program (7.1). The other program computes for a
given h-convex configuration a most different h-convex solution by solving
the integer linear program (7.8).
In Figure 7.1, the frequencies of maximum differences are plotted for

problems of size 20× 20 with density 50%. We plot these data for 2, 3, 4, 5
directions, in the cases of:
1. arbitrary reconstruction of an arbitrary configuration,
2. arbitrary reconstruction of an h-convex configuration, and
3. h-convex reconstruction of an h-convex configuration.
Not surprisingly, the symmetric difference for case 1 is very high, but

it decreases as the number of directions grows. The picture is already
surprisingly good in case 2 in the sense that most reconstructions differ
only in a few places. Finally it turns out that for h-convex reconstruc-
tion of h-convex configurations (case 3) with at least 3 directions unique
reconstruction is almost always guaranteed.
In Figure 7.2 and 7.3 similar results are plotted for configurations of

size 40 × 40 with three directions and densities from 10% to 90%. It is
noticeable—though not surprising—that the plots of arbitrary reconstruc-
tion of an arbitrary configuration are the same for densities p and 1 − p.
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Figure 7.1. Frequency of maximum symmetric differ-
ence (divided by 2) for each of 1000 configurations of
density 50% on a 20 × 20 grid with 2 (top left), 3 (top
right), 4 (bottom left), and 5 (bottom right) directions
for random instances and general reconstruction ( ),
for random line-convex instances and general reconstruc-
tion ( ), and for random line-convex instances and line-
convex reconstruction ( ).

For h-convex configurations of at least 30% the h-convex reconstruction is
most of the time almost unique.
It is not clear yet whether the assumption of line-convexity is fulfilled

in the application to study the surface of silicon wafers. But given our
previous observations, we think that it is worthwhile—if the assumption of
line-convexity is fulfilled for applications—to study the algorithmic prob-
lem of exact h-convex reconstruction more so as to have a method at hand
that (for many parameter settings) permits almost unique reconstruction.
We also think almost-uniqueness of a reconstruction might be a very im-
portant feature in practice.
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Figure 7.2. Frequency of maximum symmetric differ-
ence (divided by 2) for each of 1000 instances of den-
sity 10% (top left), 90% (top right), 20% (bottom left),
and 80% (bottom right) on a 40 × 40 grid with 3 direc-
tions for random instances and general reconstruction
( ), for random line-convex instances and general re-
construction ( ), and for random line-convex instances
and line-convex reconstruction ( ).
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Figure 7.3. Frequency of maximum symmetric differ-
ence (divided by 2) for each of 1000 instances of density
30% (top left), 70% (top right), 40% (middle left), and
60% (middle right) and 50% (bottom) on a 40 × 40 grid
with 3 directions for random instances and general re-
construction ( ), for random line-convex instances and
general reconstruction ( ), and for random line-convex
instances and line-convex reconstruction ( ).



APPENDIX A

Table of Symbols

. “The familiar dot ‘.‘ symbol from Internet ad-
dresses is used in this book to terminate sen-
tences.” [Egr98]

� set of natural numbers � = {1, 2, 3 . . . }
�0 set of the natural numbers with zero �0 =

{0, 1, 2, . . . }
Nn set of natural number up to n : {1, 2, . . . , n}.
� set of integer

2V set of all subsets of V
Ωk(M) {T ⊆ M : |T | = k}
� set of rational number
� set of real numbers
�+ set of the nonnegative real numbers
0 zero vector or matrix
1 all ones vector or matrix
I identity matrix
�q� smallest integer that is at least q
�q� biggest integer that is at most q
∪̇ union of disjoint sets
rank(S) the size of a largest independent set in S
conv(X) convex hull of the members of X
lin(X) linear hull of the members of X
aff(X) affine hull of the members of X
P (A, b, b′, d, d′) {x ∈ �n : b′ ≤ Ax ≤ b and d′ ≤ x ≤ d}
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