
��������	
�����

����
���������������������������

���������� �!���	"���#���
�	��
$%�
���

&����	����� ������	�"��"����'�	�������
&����������(���)���
�	����
	�������	����*���%��$	����	��������������	���
����+��)�"�$	������	�����,����*��$%�
���

���"����
���	���-./�--/�011-

-/�2���
�����	����3�����/�&�/���������
�)�
�������"
0/�2���
�����	����3�����/�&�/�#��������2�
����

4	"������%����
������%���"3�0-/-0/011-

&���&���
���2����������5�6����������	���	���

����4�����	���	� ��%�������������	�������
����&���&���
����2�������������*����
�

7�"���
�3�&����	����8�$%�
���8����,/8�011-

&����#���� ������������
����
��"�
�%� �/�&����	���
�
��"�%���������
���8� �������������������9����� ��"8
��� (
����
�8� ���� ����	���� ,��� :�������"��8� ���
#�����"	��� 	��� �������
�	��
���� ����� *����
���
#�"�� ���� ���� ����
�����"� ��� &	���,��	�������"�
	��	"�����������5�	�
������ ����	� �")�����!��)���
���"�5�,�����	����/

6�����"���;������������ �!���	"�'�����0110

��2(�.�<.-=�1-1>�?

�����������'���	��

���������� �!���	"�'���8�$%�
���
4��/3�1<@A0BBB@-�11�5��	�3�1<@A0BBB@-�1-

Contents

Contents

Introduction 1

1 Preliminaries 9
1.1 Basic notational conventions . 9
1.2 Set-theoretic notations . 9
1.3 Notations for sequences and lists . 10
1.4 Trees and inductive definitions . 12
1.5 Coinduction, guarded recursion and related matters 13
1.6 Reduction relations . 14

I Untyped systems 17

2 Term systems 17
2.1 Term systems with binders . 17
2.2 α-equality, free and bound variables . 20
2.3 Finite vs. infinite terms . 22
2.4 Substitution . 22
2.5 Bound variable renaming and variable conventions 31
2.6 Reduction . 33

3 ΠIE-systems 41
3.1 Definition and notations . 41
3.2 Permutative conversions . 42
3.3 β-conversions . 43
3.4 Wellfounded ΠIE-systems . 48

4 Confluence for β-reductions 51
4.1 Confluence for β-reductions in Λ . 51
4.2 Diamond property for β-developments in ΠIE-systems 53
4.3 Confluence for β-reductions in Λco . 55
4.4 Confluence for β-reductions in ΠIEco-systems 60

5 Confluence for permutations 64
5.1 Confluence for permutations in ΛJ . 64
5.2 Permutations in ΠIE-systems . 66
5.3 Confluence for permutations in ΛJco . 68
5.4 Confluence for permutations in ΠIEco-systems 77

6 Confluence for βπ-reduction 90
6.1 Commutation for ΛJ . 90
6.2 Commutation for ΠIEco-systems . 92

7 Standardization 99
7.1 Standardization for Λ . 99
7.2 Standardization for ΠIE-systems . 101
7.3 Standardization for ΠIEco-systems . 104

8 Normalization in wellfounded ΠIE-systems 108
8.1 WN for ΛJ . 108
8.2 WN for ΠIE-systems . 113
8.3 SN . 118

i

Contents

II Typed systems 125

9 The λ-calculus 126
9.1 The calculus Λ . 126
9.2 Confluence . 128
9.3 Standardization . 128
9.4 Types . 130
9.5 Weak normalization for Λ→ . 131
9.6 Strong normalization for Λ→ . 132
9.7 Bounds for the height of the βη-reduction tree 136
9.8 η-expansion and strong normalization for βη↑ 142
9.9 Strong normalization for βη↑, second variant 146

10 System ΛJ 152
10.1 The calculus . 152
10.2 Strong normalization . 153

11 System T 155
11.1 (Typed) Terms . 155
11.2 Strong normalization, first variant . 155
11.3 Strong normalization, second variant . 159
11.4 η-expansion . 164

12 η-expansion in Pure Type Systems 166
12.1 η-reduction on raw terms . 166
12.2 η-expansion in Pure Type Systems . 168

Appendix 175

A A calculus of explicit substitutions 175
A.1 The untyped calculus . 175
A.2 Relation to Λ . 176
A.3 Types . 179

B Confluence for de Bruijn-style Λ and Λco 183
B.1 Λ . 183
B.2 Confluence for Λ . 185
B.3 Λco . 188
B.4 Confluence for Λco . 189

References 191

Index of definitions 199

Index of theorems 201

ii

Introduction

This thesis presents so-called ΠIE-systems and their coinductive analogues and
studies their operational behavior from a basic proof-theoretical perspective.
The first part is mainly concerned with the untyped phenomena of conflu-
ence, standardization and inductive characterizations of terms in general ΠIE-
systems. The second part focuses on the normalization properties of some
well-known example calculi and in particular their typed versions.

Term systems with binders

ΠIE-systems form a subset of the set of higher order infinitary term systems.
These are distinguished from first order infinitary term systems by their mech-
anism of variable binding that internalizes substitution in the shape of abstrac-
tion.

Finite term systems with binders are commonly implemented in the meta-
language of the λ-calculus by means of higher-order abstract syntax [PE88].
The framework of term systems introduced in subsection 2.1 allows for infinitely
branching terms and thus would not fit into finitely presentable λ-calculi. They
should rather be classified as semi-formal systems (in the sense of proof the-
ory [Sch77]), enriched and complicated by the presence of variable binders that
require a careful handling of variables and substitution for them. In partic-
ular, the various variable conventions (see [Hin97] for a thorough discussion),
frequently employed to efficiently avoid variable name clashes for finite calculi,
fail in infinitary systems. As a consequence we have to resort to a de Bruijn-
style variable management [Bru72] with its inherently complex notions of lifting,
substitution etc. The theory of deBruijn-systems would probably find its most
accurate description in terms of modern rank 2 inductive definitions (“abstract
syntax” [FPT99, AR99, BP99]), but we have chosen the more conventional
rank 1 approach, since its exposition is just as simple and requires less involved
meta-theoretic means.

ΠIE-systems

The acronym ΠIE abridges “permutative introduction/elimination”, alluding to
the fundamental dichotomy in natural deduction between constructors, which
introduce concepts, and destructors (eliminations), which define their use. In-
deed, most λ-calculi that correspond to natural deduction derivations via the
Curry-Howard-translation, are instances of ΠIE-systems.

A natural deduction elimination rule consists of one main premise and some
additional side premises, typically of the form

...
A

B1

...
C1

B2

...
C2

D

β-reduction. If the main premise is itself obtained by an introduction rule,
this may be simplified [Pra65] by means of a computational (also called β)

1

Introduction

reduction rule. The form of the result is, of course, dictated by the semantical
goal of correctness, but nevertheless can be outlined in syntactical terms, so
that essential operational properties such as confluence are ensured.

In subsection 3.3 we provide the relevant terminology to achieve such an
abstract notion of β-conversion, thereby refining Ruckert’s conception of β-
reduction for the general natural deduction systems of his thesis [Ruc85]. In
fact, the very notion of ΠIE-systems has been stimulated by his reflections, and
our proceeding uses his groundwork as a starting point.

Permutations. Consider an elimination scheme with the same conclusion
as (some) of its side premises which becomes the main premise of another
elimination:

...
A

B1

...
C1

B2

...
C2

C1

B′
1

...
C ′
1

B′
2

...
C ′
2

D

It is often reasonable to move the second premise into the side premise of the
first elimination. In the above example derivation this results in

...
A

B1

...
C1

B′
1

...
C ′
1

B′
2

...
C ′
2

D

B2

...
C2

D

Such permutations have been introduced for disjunctive connectives like + and
∃, but also make sense and are necessary in the normalization of proofs with
the infinitely branching ω-rule [Maa75].

Permutations seem operationally harmless; their interaction with β-reduc-
tion is not very complex either. Surprisingly, it turns out that this intuition
is rather difficult to substantiate, so that the mathematically most demanding
argument of this thesis attends to a confluence proof for permutations in ΠIE-
systems.

Non-wellfounded terms

Coinductive structures provide a natural environment for the semantics of
infinite objects such as streams, or runs of an automaton. In this thesis, we
apply some of the methods established in coalgebra [Rut00] to the structure of
ΠIEco-systems that arise through a coinductive interpretation of the grammar
of ΠIE-systems. These calculi of possibly non-wellfounded terms give rise to
interesting phenomena; for instance, the coinductive analogue, Λco, of the λ-
calculus Λ admits a direct definition of the recursion operator2 Y r := r(Y r)
and embeds Böhm trees.

2This definition of Y — in contrast to the coded versions — is valid also in a typed system
with coinductive type assignment rules and finite types.

2

The appropriate notions of substitution, conversion and reduction for such
calculi are not immediate and require a careful balance of coinductive and
inductive components. Particularly important is the question of how to adjust
the concept of reduction sequence: while [KKSdV97] and the theory of infinitary
term rewriting use infinitely many sequential reductions (and thus have to
waive confluence), we choose infinitely many parallel conversions for each of
only a finite number of reduction steps. The resulting theory can be developed
parallelly to the wellfounded case and retains the fundamental theorems.

Bounds

As will be argued in subsection 2.3.1, the set of non-wellfounded terms can be
recovered as the topological closure of its wellfounded subset. Accordingly, our
extension of confluence and standardization results to non-wellfounded ΠIEco-
systems may be interpreted as a proof of continuity for the underlying functions.
Indeed, the main methodological achievements are bounding mechanisms that
yield a modulus of continuity for the constructive content of the respective
theorems. A fortiori, the bounds so established hold just as well for the
wellfounded calculi, so that the pertinent sections can be read as a detailed
analysis of the conventional proof methods from the viewpoint of complexity.

Notation systems for reduction relations

In customary expositions of confluence and standardization proofs, the underly-
ing operations on reduction sequences are hidden inside the various (and often
omitted) cases of several lemmas. The manipulation of reduction sequences
is usually described in terms of geometric intuitions that lead to figures with
many dots and lines and become quite bothersome upon formalization.3

For our task of adapting the confluence proofs to the non-wellfounded setting
and extracting bounds, it is imperative that all computations on reduction
(sequences) be explicit and demonstrably guarded recursive. To this end, a
linear notation system for reduction, developments, standard reduction and the
like is introduced as one of the main technical achievements, operating as a
major tool throughout the first part of the thesis.

Confluence

The abstract confluence proof is divided into three parts: β-reductions, permu-
tations and their combination.

In our treatment of β-reductions we generalize the traditional Tait/Mar-
tin-Löf development argument to the class of bounded ΠIE-systems, which are
characterized by a uniform bound on the complexity of their various β-reducts
(“substitution forms”). Takahashi’s beautiful method [Tak95, MP93] — which
uses complete developments — would be preferable, but it fails in infinitary

3Unfortunately, most of the actually formalized and implemented confluence proofs (see,
e.g., [Nip01], where also many references are listed) are not concerned with program extraction.

3

Introduction

ΠIE-systems, where the complete development is not necessarily attained by
finite reduction sequences.

The confluence proof for permutations is a non-trivial generalization of a
method first presented in [JM00] for the calculus ΛJ. That method heavily relied
on the fact that permutations normalize and therefore the permutative normal
form passes as a complete development for permutative reduction sequences.
Again, such normal forms exist in ΠIE-systems4 with sufficient commutation
conditions, but may not be reached. As a remedy, they are replaced by approx-
imations, stratified along the natural numbers for the case of ΛJ, and along
bounded trees in the general case.

For the combined reduction relation we can once more avail ourselves
of an idea of [JM00], where commutation of β-development and permutative
reduction sequences served to connect the two confluence results. The relevant
restrictions on the interaction between the two reduction relations are quite
liberal for general ΠIE-systems, thereby complicating the commutation proof.
Yet the overall structure of the confluence argument is preserved.

Standardization

Traditionally, the standardization theorem [Bar84] for the λ-calculus has been
expressed in terms of residuals of reduction sequences. In [JM00], Ralph
Matthes and the author gave an inductive characterization of the underlying
notion of standardness that allows to shorten the proof and adapts to permu-
tative conversions as well as to other situations [Ves01]. In this thesis’ section
on standardization the claim of [JM00] that the method translates to more
complex calculi is substantiated. In fact, by a bounding argument in a spirit
similar to that of the confluence section, it even extends to the non-wellfounded
case, so that the length of the resulting standard reduction sequences can be
estimated.5

Inductive characterizations

ΠIE-systems unite the features of many different calculi. Consequently, their
basic definitions are inevitably complex and call for sufficiently powerful syn-
tactic abstractions in order to make them at least presentable and perhaps even
digestable. As a consequence, notational conventions and overloading abound
in this thesis, serving to hide the underlying diversity in simple notation. More
than a technical necessity, it is this meta-mathematical machinery that makes
the theorems perspicuous.

One example figures prominently in the inductive (or wellfounded) part of
this thesis: the uniform depiction of iterated eliminations R in form of the
vector notation r �R. Its use has been advocated before in [JM] and continues
to rule in this thesis, leading to tight inductive characterizations for terms
and their normal forms along the head redex structure. These in turn can be

4They do not exist in ΠIEco-systems.
5For the case of the λ-calculus, [Xi99] provided a complexity analysis, although neither

method nor results are comparable with the considerations in this thesis.

4

extended to similar characterizations, WN, for the set of weakly and, SN, for
that of the strongly normalizing terms. The former has been exemplified for
the calculus ΛJ (see below) in [JM00], where a completeness proof by help of
standardization has been developed which now serves as a starting point for the
non-trivial generalization to ΠIE-systems. Several instances of the latter were
presented in [JM], but the abstract scheme is first formulated in the section on
normalization.

Strong normalization

Most of the second part of the thesis is dedicated to variations on a proof tech-
nique for strong normalization that has repeatedly appeared in the literature
[San67, Dil68, How80, Sch93] throughout the past four decades and enjoys re-
newed interest in recent work [Bec01, BW00]. In [JM] it has been shown that
the use of SN considerably shortens the underlying argument and is necessary
in order to conceive further applications, e.g., to permutative conversions. In
the treatment of the λ-calculus (section 9) we retrace the essential steps and
reformulate them, until bounds for the height of the reduction tree can be ex-
tracted. While the conventional proof-theoretic approach to such bounds uses
the height of derivation trees,6 it is likewise possible — albeit slightly surprising
— to employ the size of derivations and this furnishes even sharper bounds.

η-expansion

η-expansion has been proposed by [Pra71] and studied by Mints in a Russian
article of 1979, which passed unnoticed until the type theory community de-
veloped renewed interest for the expansive orientation of η-equality in the last
decade. Various proofs of confluence and normalization for simply typed λ-
calculi have been published (references will be provided in section 9) and also
higher type systems have been explored. As the latest development, Barthe
suggested a method for proving strong normalization for mixed β-reduction
and η-expansion in the λ-cube [Bar99b]. Yet, essential proofs are omitted or
only sketched, and they are very hard to reconstruct.

In the section on the λ-calculus, we recount the history and dangers of η-
expansion and provide two different proofs of strong normalization. From an
aesthetic point of view, the first approach is more appealing — it reveals that
all η-expansions can be performed before any β-step is executed. However, this
result does not extend to higher type systems like system F or the Calculus
of Constructions. The second approach more subtly analyzes the interaction
between β-reduction and η-expansion, utilizing the fact that η-expansion is
a subset of the converse of η-reduction without overlapping with inverse β.
The resulting commutation properties are formulated w.r.t. β-reduction and
converse η-contraction only, and therefore apply to the untyped λ-calculus, from
which they carry over to higher type systems and permit a purely syntactic and
perspicuous strong normalization proof for the combined reduction relation in
β-normalizing Pure Type Systems, where η-expansion is only slightly restricted.

6For Λ this has been demonstrated in [Bec01] and [Sch91].

5

Introduction

The λ-calculus

The λ-calculus is the heart of this thesis.
First, it constitutes the major example, to which every method we discuss

has to tune. Second, the theorems to be proved are essentially extensions of the
theory of the λ-calculus. Third, the techniques exerted are derived from basic
constructions in the λ-calculus.

This propinquity of our venture with the very elaborate theory of so classic
a calculus is not to be considered a drawback, but an aid in keeping track of
our position in the abstract theory.

More specifically, the contributions to the theory of the λ-calculus are the
following:

• We prove bounds for the lengths of joining (parallel) reduction sequences
in the confluence section and similar bounds for the lengths of standard
reduction sequences in the standardization part.

• The coinductive (sometimes also called infinitary) calculus Λco is shown
to be confluent and standardizing.

• Inductive characterizations for terms, normal forms, weakly and strongly
normalizing terms are reproved.

• The normalization arguments of [JM] are repeated and carefully analyzed
with regard to new bounds for the height of the reduction tree.

• Commutation of η-expansion with β-reduction is studied and strong nor-
malization of their combination established by a new proof method.

The calculus ΛJ

Just as the λ-calculus prototypes β-reduction, the system ΛJ serves as a minimal
environment for the untyped study of permutations (which until the introduc-
tion of ΛJ existed only in a typed world). All techniques for permutations are
tested against ΛJ before they can be applied to the general permutations of ΠIE-
systems. As a consequence, many ideas for ΠIE-systems are derived from the
two fundamental papers [JM00, JM], in which Ralph Matthes and the author
outlined some aspects of the meta-theory of ΛJ.7

Confluence and standardization for ΛJ and its coinductive analogue ΛJco

follow from the results of the respective sections on ΠIEco-systems. In order to
illustrate applications of a general permutation lemma for the set SN, we also
added a short note on the strong normalization proof that follows [JM].

System T

We use the λ-based analogue of Gödel’s system T [Göd58] as an example
to demonstrate both the versatility of the concept of ΠIE-systems and the

7Further results have been obtained in [Mat00] and recently in [Mat01], where interpolation
for the typed version of ΛJ is validated.

6

strength of our proof method for strong normalization. The respective section
massages the argument given in [JM] until a version is obtained that allows easy
assignment of ordinals. Unfortunately, this final step that would lead to ordinal
bounds for the complexity of functions that compute the reduction height of
terms, is not carried out, although it would be particularly interesting to see
whether the derivation size might again be preferable over the height, just as it
has been for Λ.

Outline of the contents

Section 1 is a prerequisite for the whole thesis and should be read carefully, be-
cause it contains the central notions of sequences together with many notational
conventions. Also, some terminology for coinduction and guarded recursion is
fixed.

Section 2 introduces both inductive and coinductive infinitary de Bruijn-
style term systems and recalls basic operations like lifting and substitution.
A short excursion addresses named analogues to the de Bruijn-systems and
reviews the notions of α-equality and bound variable renaming, without going
into detail. Finally, the abstract framework of notations for reduction relations
and basic closure properties of the general notions like parallel substitutivity
are discussed.

Section 3 defines ΠIE-systems with the core components of β-reduction
and permutation, provides some examples and establishes a first result on the
compatibility of β-reduction with parallel substitutive reduction relations. For
wellfounded ΠIE-systems, inductive characterizations of terms and normal forms
are displayed.

Section 4 is dedicated to the confluence problem for β-reduction. First, the
Takahashi proof for the λ-calculus Λ is repeated in order to demonstrate how
the notation systems for developments behave. Although the basic definitions
carry over to full ΠIE-systems, this does not suffice to infer confluence for them.
A detailed study of coinductive Λ exhibits more counterexamples before the
concept of bounding finds its first application to β-developments. Finally, this
method is extended to bounded ΠIEco-systems, which have to be defined and
analyzed.

Section 5 proves confluence for permutations in ΠIEco-systems. To this end,
the [JM00] proof for ΛJ is recast in the framework of reduction notations and
extended to ΠIE-systems as far as possible. This is not very far, but remedy
can be found in a study of the coinductive analogue of ΛJ. Ramified permu-
tative developments for ΛJco are introduced and bounded, until they disclose
confluence for the example calculus. Then the general approach is explained,
where an abstract apparatus for bounding and ramification of developments
along trees becomes necessary.

Section 6 first treats commutation of β-reduction and permutation in ΛJ.
Then it analyzes two different conciliation properties for the reduction relations
in general ΠIEco-systems and proves commutation relative to the weaker one,
again with the help of a bounding argument.

Section 7 focuses on standardization results for ΠIE-systems. The basic

7

