Stefan Müller

Methodik für die entwicklungs- und planungsbegleitende Generierung und Bewertung von Produktionsalternativen

Herbert Utz Verlag · München
Inhaltsverzeichnis

1 Einleitung ... 1
 1.1 Allgemeines ... 1
 1.2 Herausforderungen im Wettbewerbsumfeld ... 1
 1.3 Begriffsdefinitionen ... 7
 1.4 Aufgabenstellung und Zielsetzung .. 10
 1.5 Darstellung und Abgrenzung des Betrachtungsraums 11
 1.5.1 Allgemeines ... 11
 1.5.2 Produktionsart ... 12
 1.5.3 Produktionsarten und -prinzipien ... 12
 1.5.4 Modularisierung und Wandlungsfähigkeit von Produktions- 15
 systemen ... 15
 1.5.5 Grundlagen der Produktentwicklung und Produktionsplanung........ 17
 1.5.6 Grundlagen des Wissensmanagements ... 18
 1.5.7 Aspekte der Rechnerunterstützung ... 19
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Titel</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.5.8</td>
<td>Zusammenfassung</td>
<td>21</td>
</tr>
<tr>
<td>1.6</td>
<td>Vorgehensweise</td>
<td>22</td>
</tr>
<tr>
<td>2</td>
<td>Stand der Forschung und Technik</td>
<td>23</td>
</tr>
<tr>
<td>2.1</td>
<td>Allgemeines</td>
<td>23</td>
</tr>
<tr>
<td>2.2</td>
<td>Methoden und Ansätze der integrierten Produktentwicklung und Produktionsplanung</td>
<td>23</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Allgemeines</td>
<td>23</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Produktentwicklung</td>
<td>23</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Produktionsplanung</td>
<td>26</td>
</tr>
<tr>
<td>2.2.4</td>
<td>Parallele bzw. integrierte Produktentwicklung und Produktionsplanung</td>
<td>28</td>
</tr>
<tr>
<td>2.2.5</td>
<td>Ausgewählte Forschungsansätze zur frühen Planung von Produktionsverfahren</td>
<td>33</td>
</tr>
<tr>
<td>2.2.6</td>
<td>Zusammenfassung</td>
<td>40</td>
</tr>
<tr>
<td>2.3</td>
<td>Methoden und Ansätze der Bewertung</td>
<td>41</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Allgemeines</td>
<td>41</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Kosten- und Leistungsrechnung</td>
<td>42</td>
</tr>
<tr>
<td>2.3.2.1</td>
<td>Allgemeines</td>
<td>42</td>
</tr>
<tr>
<td>2.3.2.2</td>
<td>Kostenstrukturen</td>
<td>43</td>
</tr>
<tr>
<td>2.3.2.3</td>
<td>Zeitbezug der Kostenrechnungssysteme</td>
<td>44</td>
</tr>
<tr>
<td>2.3.2.4</td>
<td>Umfangsbezug der Kostenrechnungssysteme</td>
<td>46</td>
</tr>
<tr>
<td>2.3.2.5</td>
<td>Zusammenfassung</td>
<td>47</td>
</tr>
<tr>
<td>2.3.3</td>
<td>Kostenkalkulation</td>
<td>48</td>
</tr>
<tr>
<td>2.3.4</td>
<td>Prozesskostenrechnung</td>
<td>50</td>
</tr>
<tr>
<td>2.3.5</td>
<td>Investitionsrechnung</td>
<td>54</td>
</tr>
</tbody>
</table>
2.3.6 Ergänzende Methoden und Ansätze des Kostenmanagements........ 56
2.3.7 Qualitative Bewertung ... 57
2.3.8 Entwicklungs- und planungsbegleitende Bewertung 59
 2.3.8.1 Allgemeines ... 59
 2.3.8.2 Grundlegende Methoden .. 59
 2.3.8.3 Ausgewählte Forschungsansätze 61
2.3.9 Zusammenfassung ... 75
2.4 Gesamtfazit ... 76

3 Anforderungen an die Methodik und Konzeption der Methodik .. 79
 3.1 Allgemeines .. 79
 3.2 Anforderungen an die Methodik .. 79
 3.2.1 Allgemeines ... 79
 3.2.2 Integrative Anforderungen .. 80
 3.2.3 Kontinuitätsanforderungen .. 81
 3.2.4 Anforderungen an die Abbildung und Nutzung von Wissen 82
 3.2.5 Einführungs- und anwendungsorientierte Anforderungen 83
 3.3 Konzeption der Methodik ... 85

4 Einführung der Methodik ... 87
 4.1 Allgemeines .. 87
 4.2 Partialmodelle der Generierung und Bewertung von Produktions-
 alternativen .. 88
 4.2.1 Allgemeines ... 88
 4.2.2 Modell zur Abbildung von Wissen über Produktionsverfahren 88
Inhaltsverzeichnis

4.2.3 Modell zur Abbildung von Interdependenzen und Alternativen......94
 4.2.3.1 Allgemeines...94
 4.2.3.2 Abbildung von Relationen zwischen Produkt und
 Produktionsverfahren ...95
 4.2.3.3 Abbildung von Wechselwirkungen zwischen
 Produktionsverfahren ...101

4.2.4 Ressourcen- und produktionsverfahrensorientiertes Modell zur
 reifenden Kostenbewertung...106
 4.2.4.1 Allgemeines..106
 4.2.4.2 Ermittlung von Verfahrenszeiten auf der Basis von
 Erfahrungswissen ...109
 4.2.4.3 Ermittlung von Verfahrenszeiten auf der Basis von
 historischen Daten ..109
 4.2.4.4 Ermittlung von Verfahrenszeiten auf der Basis von
 mathematischen Funktionen...113
 4.2.4.5 Kombination der Zeitermittlungsvarianten und
 Verdichtung zur Kostenbewertung.....................................115

4.2.5 Modell zur Bewertung qualitativer Aspekte118

4.2.6 Modell zur Bewertung von Einmalaufwänden..........................121

4.3 Kombination der Partialmodelle ...124

4.4 Vorgehensweise zur Anwendung der Methodik127
 4.4.1 Allgemeines...127
 4.4.2 Schritt 1: integrierte Produktdefinition128
 4.4.3 Schritt 2: Verfahrenskettendefinition130
 4.4.4 Schritt 3: Anpassung und Analyse der Verfahrensketten..........133
 4.4.5 Schritt 4: ganzheitliche Bewertung und Auswahl der
 Verfahrensketten ...136
 4.4.6 Zusammenfassung..138

IV
4.5 Umsetzungs- und einführungsorientierte Aspekte .. 139
 4.5.1 Allgemeines .. 139
 4.5.2 Allgemeingültige Anforderungen an ein Rechnerwerkzeug 140
 4.5.2.1 Generierung und Rückführung von Verfahrensketten 140
 4.5.2.2 Abbildung und Nutzung von Planungswissen zur
 Produkt- und Verfahrenskonfiguration .. 141
 4.5.2.3 Zeitliche und monetäre Bewertung .. 142
 4.5.2.4 Reifende monetäre Bewertung .. 143
 4.5.2.5 Qualitative Bewertung .. 144
 4.5.2.6 Vergleich von Verfahrenskettenalternativen 144
 4.5.2.7 Einbindung in die Prozess- und Informations-
 technologielandschaft .. 144
 4.5.3 Vorgehensweise zur Auswahl eines Rechnerwerkzeugs 145
 4.6 Zusammenfassung ... 149

5 Fallbeispiele .. 151
 5.1 Allgemeines .. 151
 5.2 Anwendung der Methodik in der Produktionsplanung 151
 5.2.1 Ausgangssituation und Rahmenbedingungen 151
 5.2.2 Zielsetzung und Vorgehensweise .. 152
 5.2.3 Lösungen und Ergebnisse .. 154
 5.3 Anwendung der Methodik in der Montageplanung 160
 5.3.1 Ausgangssituation und Rahmenbedingungen 160
 5.3.2 Zielsetzung und Vorgehensweise .. 161
 5.3.3 Lösungen und Ergebnisse .. 162
 5.4 Zusammenfassung ... 168
6 Bewertung von Aufwand und Nutzen
 6.1 Allgemeines
 6.2 Einmalaufwände
 6.3 Kontinuierliche Aufwände
 6.4 Monetärer Nutzen
 6.5 Qualitativer Nutzen
 6.6 Ganzheitliche Bewertung

7 Zusammenfassung und Ausblick

8 Literaturverzeichnis

9 Anhang
 9.1 Generische Produktelemente nach Owodunni
 9.2 Ablaufdiagramm der Methodik
 9.3 Anforderungs- bzw. Bewertungskatalog zur Auswahl von Rechnerwerkzeugen
 9.4 Glossar
1 Einleitung

1.1 Allgemeines

1.2 Herausforderungen im Wettbewerbsumfeld

1.2 Herausforderungen im Wettbewerbsumfeld

Abbildung 2: Innovationsfelder in der Produktionstechnik (UHLMANN 2004)

- Flexibilisierung der Organisationsformen (z. B. Kompetenznetzwerke mit transparenter Auftragsabwicklung)
- Modularisierung, Dezentralisierung, Standardisierung (z. B. Dezentralisierung der Intelligenz und Aufwärtskompatibilität der Anlagen)

Tabelle: Innovationsfelder in der Produktionstechnik

<table>
<thead>
<tr>
<th>Fertigungsverfahren</th>
<th>Maschinen</th>
<th>Werkzeuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hochgeschwindigkeitsbearbeitung</td>
<td>Stabkinematik (Hexapod, Dodekapod)</td>
<td>Innovative Schneidstoffe</td>
</tr>
<tr>
<td>Hartbearbeitung</td>
<td>selbstoptimierende Maschinen</td>
<td>Beschichtungstechnologien</td>
</tr>
<tr>
<td>Ultrapräzisions- & Mikrobearbeitung</td>
<td>magnetofluidische Positioniersysteme</td>
<td>Werkzeuge zur integrierten Erkennung von Zustand und Prozesskenngrößen</td>
</tr>
<tr>
<td>Hybridverfahren</td>
<td>innovative Maschinenkomponenten</td>
<td></td>
</tr>
<tr>
<td>Trockenbearbeitung</td>
<td>umkonfigurierbare Maschinen</td>
<td></td>
</tr>
<tr>
<td>Rapid Prototyping/Tooling</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Werkstoffe</th>
<th>Prozessketten</th>
</tr>
</thead>
<tbody>
<tr>
<td>hochfeste Werkstoffe (Nickelbasis-, Titanlegierungen)</td>
<td>Verkürzung von Prozessketten durch:</td>
</tr>
<tr>
<td>Leichtbauwerkstoffe (geschäumte Metalle, Magnesium, Aluminium)</td>
<td></td>
</tr>
<tr>
<td>Verbundwerkstoffe (FVK, MMC, verstärkte Keramiken)</td>
<td></td>
</tr>
<tr>
<td>Sinterwerkstoffe (metallisch, keramisch)</td>
<td></td>
</tr>
<tr>
<td>Verfahrenssubstitution</td>
<td></td>
</tr>
<tr>
<td>Near-Net-Shape Technologien</td>
<td></td>
</tr>
<tr>
<td>hochintegrierte Produktion</td>
<td></td>
</tr>
<tr>
<td>integrierte Produkt- und Prozessentwicklung</td>
<td></td>
</tr>
</tbody>
</table>

- Flexibilisierung der Organisationsformen (z. B. Kompetenznetzwerke mit transparenter Auftragsabwicklung)
- Modularisierung, Dezentralisierung, Standardisierung (z. B. Dezentralisierung der Intelligenz und Aufwärtskompatibilität der Anlagen)
1.2 Herausforderungen im Wettbewerbsumfeld

- Vernetzung (z. B. vernetzte Entwicklungsteams, -werkzeuge und -prozesse)
- Digitalisierung (z. B. virtuelle Prototypen und Hardware-in-the-Loop-Simulation)
- neue Materialien und Prozesse (z. B. höhere Zerspankräfte, höhere Vorschubgeschwindigkeiten, intelligente Materialien und selbstadaptierende Systeme)
- Nachhaltigkeit (z. B. Umweltfreundlichkeit und Abbildung von Wissen (vgl. Glossar) in Bibliotheken)

Die fünfte Disziplin Mitarbeitorientierung ist sowohl eine eigenständige als auch komplementäre Disziplin im Vergleich zu den anderen. Im Bestreben ein kontinuierlich erfolgreiches Unternehmen zu gestalten, ist der Mensch mit seinen Möglichkeiten hinsichtlich Individualität, Kreativität und Flexibilität ein entscheidender Schlüsselfaktor. Die Mitarbeiter sind beispielsweise in Form von Teamarbeit, Arbeitszeitmodellen und/oder Methodenunterstützung optimal zu fördern und zu fordern (SPATH 2005).

Zusammenfassend beschreibt MILBERG (2004B) das Unternehmen der Zukunft als das Triple-A-Unternehmen, das in höchstem Maße agil, antizipativ und adaptiv ist, wobei hier die geforderte Innovationskraft mit einbezogen wird. Im Zusammenhang mit der vorliegenden Arbeit sollen die Innovationskraft im Sinne der frühzeitigen Gestaltung von ganzheitlichen und innovativen Verfahrensketten sowie die Bewertung der wirtschaftlichen Vorteilhaftigkeit der Verfahrensketten als Kernaspekte herausgegriffen werden. Die Konkurrenzfähigkeit von Unternehmen wird in starkem Maß davon abhängen, ob es gelingt, etablierte Ansätze in der Produktionstechnik mit Innovationen wirtschaftlich zu kombinieren. Es ist ein ausgewogenes Verhältnis zwischen dem Bewähr-

1.3 Begriffsdefinitionen
Um für die Zielsetzung einer entwicklungs- und planungsbegleitenden Generierung und Bewertung von Produktionsalternativen ein einheitliches Verständnis zu schaffen, ist zunächst eine Definition von hierfür relevanten Begriffen erforderlich. Im Rahmen der Arbeit sind nachfolgende Begriffe von essenzieller Bedeutung:

Produktentwicklung

Produktionssystem
1.3 Begriffsdefinitionen

- Festlegung der Eingaben (Teile, Werkstoffe, Energie und Informationen (vgl. Glossar))
- Beschreibung der Ausgaben (Produkte, Abfälle, Energie, Informationen)
- Beschreibung der Arbeitsaufgabe (Arbeitablauf inklusive des Zusammenwirkens zwischen Mensch und Betriebsmittel (vgl. Glossar))

Produktionsplanung

Produktion

Produktionsverfahren

Ein Produktionsverfahren bezeichnet ein Verfahren zur Herstellung von geometrisch bestimmten festen Körperrn. Es sind u. a. Verfahren zum Fügen oder Ändern von Stoff-
1 Einleitung

Produktionsprozess
Im Vergleich zu Produktionsverfahren weisen Produktionsprozesse einen höheren Detaillierungs- und Konkretisierungsgrad auf. Ein Produktionsprozess ist durch definierte Betriebsmittel sowie konkrete Prozessparameter festgelegt und bezieht sich i. d. R. auf einen spezifischen Produktionsschritt an einem Produkt (vgl. KNOCHE (2005, S. 5 ff.)).

Produktionsalternativen

Integration

Generierung
Im Zuge dieser Arbeit ist die Generierung von Produktionsalternativen mit den Begriffen Gestaltung, Definition oder Planung von Produktionsalternativen gleichzusetzen.

Bewertung
Die Bewertung von Produktionsalternativen geht in dieser Arbeit über den Aspekt der rein betriebswirtschaftlichen Betrachtung hinaus. Bezüglich dieser ist die Bewertung
1.4 Aufgabenstellung und Zielsetzung

eine betriebswirtschaftliche Regel, nach der Gegenständen Geldbeträge zugeordnet werden (GUDEMANN 1992). In dieser Arbeit sollen aber sowohl monetäre als auch weitere quantitative (z. B. zeitliche) und qualitative Kriterien (z. B. Risiken) in die Bewertung einbezogen werden.

Obige Begriffe stellen die wesentlichen für diese Arbeit dar. Alle weiteren Begriffe, die hinsichtlich der Arbeit relevant sind, werden im Kontext eingeführt.

1.4 Aufgabenstellung und Zielsetzung

Im Folgenden wird die Aufgabenstellung und Zielsetzung präzisiert. Die Methodik für die entwicklungs- und planungsbegleitende Generierung und Bewertung von Produktionsalternativen soll geeignete Antworten auf die aktuellen Herausforderungen im Wettbewerbsumfeld (Abschnitt 1.2) bieten. Im Speziellen sollen die Disziplinen „Innovationskraft“, „Schnelligkeit in der Planung“ und „wirtschaftlicher Erfolg“ unterstützt werden (vgl. Abbildung 1).

1 Einleitung

Planung auf Basis grober Produktinformationen

Berücksichtigung der aktuell verfügbaren Produktionsmöglichkeiten

Berücksichtigung neuer innovativer Technologien

Vorgehensweise zur frühzeitigen Generierung und Identifikation optimaler Produktionsverfahrensketten

planen anstatt kopieren und adaptieren

Bewertung der Planungsergebnisse

produktionsseitige Optimierung der Produktentwicklung

Abbildung 3: Zielsetzung der Arbeit

Im Rahmen dieser Zielsetzung soll bei der Planung von Produktionsverfahrensketten ein ausgewogenes Verhältnis zwischen den Aspekten Innovation, Innovationsrisiko sowie Wirtschaftlichkeit erreicht werden. Somit soll sowohl der Anspruch der Technologieführerschaft am Standort Deutschland als auch die internationale Konkurrenzfähigkeit gestärkt werden. Operativ sollen durch die zu entwickelnde Methodik Verfahrensketten erarbeitet und identifiziert werden, die eine optimale Grundlage für die detaillierte Produktionsprozessplanung bieten.

1.5 Darstellung und Abgrenzung des Betrachtungsraums

1.5.1 Allgemeines

Der Abschnitt 1.5 stellt die Bereiche dar, auf denen die Methodik für die entwicklungs- und planungsbegleitende Generierung und Bewertung von Produktionsalternativen basiert und grenzt die nicht detailliert betrachteten Bereiche ab. Teilweise wird auch auf grundlegende Themengebiete eingegangen, die für das Gesamtverständnis hilfreich sind. Im Speziellen werden die Themenkomplexe Produktspektrum (Abschnitt 1.5.2),
1.5 Darstellung und Abgrenzung des Betrachtungsraums

Produktionsarten und -prinzipien (Abschnitt 1.5.3), Modularisierung und Wandlungsfähigkeit von Produktionssystemen (Abschnitt 1.5.4), Grundlagen der Produktentwicklung und Produktionsplanung (Abschnitt 1.5.5) sowie Grundlagen des Wissensmanagements (Abschnitt 1.5.6) behandelt. Da die Prozesse der Produktentwicklung und Produktionsplanung vielfach durch Informationstechnologie (IT) unterstützt werden, geht Abschnitt 1.5.7 einführend auf den Aspekt der Rechnerwerkzeuge ein. Es wird ein Überblick darüber gegeben, welche Arten von Rechnerwerkzeugen zum aktuellen Zeitpunkt zur Verfügung stehen und auf welche Art und Weise diese die Tätigkeiten der Generierung und Bewertung von Produktionsalternativen unterstützen können.

1.5.2 Produktspektrum

Beispiele für geeignete Produkte zur Validierung und Anwendung der Methodik bietet Kapitel 5. Zum einen wird die Methodik bezüglich eines Bauteils (Turbinenkompone- te) und zum anderen hinsichtlich einer Baugruppe (Scheibenbremse) angewendet.

1.5.3 Produktionsarten und -prinzipien

Einleitung

<table>
<thead>
<tr>
<th>Produktionsart</th>
<th>Einzelproduktion</th>
<th>Serienproduktion</th>
<th>Massenproduktion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stückzahl (ca.)</td>
<td>1-10</td>
<td>10-100</td>
<td>1.000-100.000</td>
</tr>
<tr>
<td>Baustellenproduktion</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Werkstattproduktion</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Gruppenproduktion</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
<tr>
<td>Fließproduktion</td>
<td>●</td>
<td>●</td>
<td>●</td>
</tr>
</tbody>
</table>

Legende: ● – geeignet ○ – eingeschränkt geeignet ▼ – betrachteter Ausschnitt

Abbildung 4: Betrachteter Ausschnitt der Produktionsarten und -prinzipien

Um hinsichtlich der für die Arbeit relevanten Produktionsprinzipien ein grundlegendes Verständnis zu schaffen, soll vertiefend zu Abbildung 4 auf die diversen Organisationsprinzipien, -formen und -typen mit dem dazugehörigen Materialfluss eingegangen werden (Abbildung 5). Dadurch wird die Basis geschaffen, geplante Verfahrensketten dahingehend überprüfen zu können, ob sie organisatorisch innerhalb des geplanten bzw. existierenden Produktionssystems realisiert werden können.

Abbildung 5: Organisation von Produktionssystemen (in Anlehnung an WIENTHAL (2005, S. 29 ff.))

Aufgrund der Fokussierung der Arbeit auf die Generierung von Verfahrensketten stellen Organisationsprinzipien sowie Steuerungs- und Logistikstrategien nur einen Randaspekt dar. Durch die Methodikanwendung werden die grundlegenden productionstechnischen

1.5.4 Modularisierung und Wandlungsfähigkeit von Produktionsystemen

1.5 Darstellung und Abgrenzung des Betrachtungsraums

setzt sich definitionsgemäß aus den Elementen Flexibilität und Reaktionsfähigkeit zusammen. Der Begriff Flexibilität umfasst hierbei die Beherrschung von Szenarien, die bei der Planung bereits berücksichtigt werden. Die Reaktionsfähigkeit bezieht sich auf lösungsneutrale Anpassungspotenziale eines Unternehmens in einem turbulenten Umfeld, die im Bedarfsfall schnell und kostenarm aktiviert werden können (ZÄH ET AL. 2005A).

<table>
<thead>
<tr>
<th>Strukturmaßnahme</th>
<th>Darstellung</th>
<th>Erläuterung</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Integration/ Modularisierung</td>
<td></td>
<td>mehrere Prozesse zusammenfassen bzw. Prozesse in mehrere Teilprozesse trennen</td>
</tr>
<tr>
<td>2 Parallelisierung</td>
<td></td>
<td>Prozesse parallelisieren, die ursprünglich in Sequenzen abliefen</td>
</tr>
<tr>
<td>3 Kooperation</td>
<td></td>
<td>Prozesse extern verlagern</td>
</tr>
<tr>
<td>4 Verlagerung</td>
<td></td>
<td>einen ganzen Prozess oder Teile eines Prozesses in einen anderen Prozessstrang verlegen</td>
</tr>
<tr>
<td>5 Eliminierung</td>
<td></td>
<td>einen Prozess ersatzlos streichen</td>
</tr>
<tr>
<td>6 Substitution</td>
<td></td>
<td>einen Prozesses durch einen anderen/veränderten Prozess ersetzen</td>
</tr>
<tr>
<td>7 Reihenfolgebildung</td>
<td></td>
<td>Sequenzen zweier oder mehrerer Prozesse ändern</td>
</tr>
<tr>
<td>8 Duplizierung</td>
<td></td>
<td>gleichartige Prozesse mehrerer Prozessstränge zusammenfassen bzw. einen Prozess auf gleichartige Prozesse in verschiedenen Strängen aufteilen</td>
</tr>
<tr>
<td>9 Veränderung der Ressourcenzuordnung</td>
<td></td>
<td>neue Ressourcen zu einem Prozess zuordnen, Ressourcen ersetzen, Ressourcen abziehen</td>
</tr>
<tr>
<td>10 Gestaltung neuer Prozesse</td>
<td></td>
<td>einen neuen Prozesses einführen</td>
</tr>
</tbody>
</table>

Tabelle 1: Strukturmaßnahmen (in Anlehnung an EVERSHEIM & TERHAAG (1999))

Die zehn möglichen generischen Strukturmaßnahmen bieten einen Baukasten zur Optimierung von Strukturen und Prozessen. Somit können die generischen Strukturmaßnahmen als eine Grundlage für die entwicklungs- und planungsbegleitende Generierung von Produktionsalternativen aufgegriffen werden.
1.5.5 Grundlagen der Produktentwicklung und Produktionsplanung

Abbildung 6: Relevante Produktentwicklungs- und Produktionsplanungsprozesse in Bezug auf die Arbeit (in Anlehnung an VDI RICHTLINIE 2221 (1993) und REFA (1990))

Im Zusammenhang mit dem Produktionsplanungsprozess soll die Methodik in den Phasen „Analyse der Ausgangssituation“, „Konkretisierung der Planungsaufgaben“ sowie „Grobplanung des Produktionssystems“ (Planungssystematik nach REFA (1990)) ansetzen. Da sich die zu entwickelnde Methodik auf die frühe Phase der grundlegenden Verfahrenskettenplanung konzentrieren soll, ist die Phase der „Feinplanung des Produk-

1.5.6 Grundlagen des Wissensmanagements

Abbildung 7: Operative Bausteine des Wissensmanagements

1.5.7 Aspekte der Rechnerunterstützung

Digitale Werkzeuge können eine maßgebliche Unterstützung hinsichtlich der Aufgabenstellung der vorliegenden Arbeit bieten. Zum einen können die hinterlegten Informationen und die Funktionalitäten der Rechnerwerkzeuge genutzt werden, um die Entwicklung und Planung der Objekte Produkt, Verfahren, Prozesse, Ressourcen, Organisationsformen oder Steuerungssysteme zu unterstützen. Zum anderen werden vielfach
1.5 Darstellung und Abgrenzung des Betrachtungsraums

Funktionalitäten zur Verfügung gestellt, um die jeweiligen Objekte hinsichtlich der Zeiten, Kosten und qualitativen Kriterien bewerten zu können. Des Weiteren können die digitalen Werkzeuge i. d. R. in den verschiedenen Phasen der Produktentwicklung, Produktionsplanung sowie Produktion kontinuierlich und übergreifend eingesetzt werden (Abbildung 8).

Abbildung 8: Benutzerschnittstellen, Werkzeuge und Methoden der Virtuellen Produktion (in Anlehnung an ZÄH ET AL. (2005C); REINHART ET AL. (2006B))

1.5.8 Zusammenfassung

1.6 Vorgehensweise

Nach der Einleitung (Kapitel 1) mit der Darstellung der aktuellen Trends und Herausforderungen, der Definition von Begriffen, der Fokussierung bezüglich der Arbeit sowie der Aufgabenstellung und Zielsetzung wird im folgenden Kapitel 2 der Stand der Forschung und Technik erläutert. Die Betrachtung konzentriert sich auf die Bereiche der integrierten Produktentwicklung und Produktionsplanung sowie der Bewertungsmethoden. Auf der Basis einer Zusammenfassung und der Ausarbeitung der daraus resultierenden Defizite werden die spezifischen Anforderungen an die zu entwickelnde Methodik (Kapitel 3) dokumentiert und auf der Grundlage der Zielsetzung präzisiert. Darauf basierend erfolgt die Konzeption der Methodik für die entwicklungs- und planungsbegleitende Generierung und Bewertung von Produktionsalternativen (Abschnitt 3.3). Hier wird das „Gerüst“ der Methodik erarbeitet und dargestellt, um im Folgenden die Methodik detailliert mit allen relevanten Elementen zu beschreiben (Kapitel 4). Kapitel 5 veranschaulicht die exemplarische Anwendung der Methodik mittels zweier Fallbeispiele. Entsprechend den Resultaten aus der exemplarischen Anwendung folgt eine Bewertung von Nutzen und Aufwand (Kapitel 6) hinsichtlich der Einführung und Anwendung der Methodik. Eine Zusammenfassung und ein Ausblick (Kapitel 7) schließen die Arbeit ab. Abbildung 9 präsentiert den Aufbau der Arbeit:

<table>
<thead>
<tr>
<th>Kapitel 1</th>
<th>Einleitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapitel 2</td>
<td>Stand der Forschung und Technik</td>
</tr>
<tr>
<td>Kapitel 3</td>
<td>Anforderungen an die Methodik und Konzeption der Methodik</td>
</tr>
<tr>
<td>Kapitel 4</td>
<td>Methodik für die entwicklungs- und planungsbegleitende Generierung und Bewertung von Produktionsalternativen</td>
</tr>
<tr>
<td>Kapitel 5</td>
<td>Fallbeispiele: Anwendung der Methodik</td>
</tr>
<tr>
<td>Kapitel 6</td>
<td>Bewertung von Nutzen und Aufwand der Methodik</td>
</tr>
<tr>
<td>Kapitel 7</td>
<td>Zusammenfassung und Ausblick</td>
</tr>
</tbody>
</table>

Abbildung 9: Überblick über die Inhalte und den Aufbau der Arbeit

Bei der Entwicklung der Methodik wird ein induktiver Ansatz verfolgt. Das heißt, auf der Basis von Analysen und Beobachtungen aus bestehenden wissenschaftlichen Ansätzen und aktuellen industriellen Vorgehensweisen wird eine allgemeingültige Methodik erarbeitet.
iwfb Forschungsberichte Band 1–121

Herausgeber: Prof. Dr.-Ing. J. Milberg und Prof. Dr.-Ing. G. Reinhart, Institut für Werkzeugmaschinen und Betriebswissenschaften der Technischen Universität München

1. Steffinger, E.
 Beitrag zur Sicherung der Zuverlässigkeit und Verfügbarkeit moderner Fertigungsmittel
 1986 · 72 Abb. · 167 Seiten · ISBN 3-540-16991-3

2. Fetscherer, A.
 Untersuchung der spanenden Bearbeitung von Kernen
 1986 · 90 Abb. · 175 Seiten · ISBN 3-540-16992-1

3. Meier, H.
 Montageautomatisierung am Beispiel des Schraubens mit industriellen Robotern
 1986 · 77 Abb. · 144 Seiten · ISBN 3-540-16993-X

4. Müller, H.
 Modell zur Berechnung verzweigter Antriebsstrukturen
 1986 · 74 Abb. · 173 Seiten · ISBN 3-540-16994-7

5. Simon, W.
 Elektrische Vorschubantriebe an NC-Systemen
 1986 · 141 Abb. · 198 Seiten · ISBN 3-540-16995-5

6. Buch, S.
 Analytische Untersuchungen zur Technologie der Kugelbearbeitung
 1986 · 70 Abb. · 127 Seiten · ISBN 3-540-17274-2

7. Hurtinger, L.
 Schneidemessung von Oberflächen
 1986 · 79 Abb. · 162 Seiten · ISBN 3-540-16996-3

8. Pfalz, U.
 Echtzeit-Kollisionschutz an NC-Drehmaschinen
 1986 · 54 Abb. · 121 Seiten · ISBN 3-540-17275-0

9. Barthelmess, P.
 Montagegerechtes Konstruieren durch die Integration von Produkt- und Montageprozessgestaltung
 1987 · 70 Abb. · 144 Seiten · ISBN 3-540-18120-2

10. Reitmaier, N.
 Nutzungssicherung von flexibel automatisierten Produktionsanlagen
 1987 · 84 Abb. · 176 Seiten · ISBN 3-540-18440-6

11. Dietz, H.
 Rechnerunterstützte Entwicklung flexibel automatisierter Montageprozesse
 1989 · 56 Abb. · 144 Seiten · ISBN 3-540-18799-5

12. Reinhart, G.
 Flexible Automatisierung der Konstruktion und Fertigung elektrother Leitungsstüze
 1988 · 112 Abb. · 197 Seiten · ISBN 3-540-19003-1

13. Bürstner, H.
 Investitionsentscheidung in der rechnerintegrierten Produktion
 1988 · 74 Abb. · 196 Seiten · ISBN 3-540-19099-6

14. Grohe, A.
 Universelles Zellenrechnerkonzept für flexible Fertigungssysteme
 1989 · 74 Abb. · 150 Seiten · ISBN 3-540-19182-8

15. Risse, K.
 Klipsmontage mit Industrierobotern
 1989 · 92 Abb. · 158 Seiten · ISBN 3-540-19183-6

16. Luz, P.
 Leitsysteme für rechnerintegrierte Auftragserledigung
 1989 · 44 Abb. · 144 Seiten · ISBN 3-540-19266-3

17. Klopff, C.
 Mobiler Roboter im Materialfluß eines flexiblen Fertigungssystems
 1989 · 86 Abb. · 164 Seiten · ISBN 3-540-56468-0

18. Rascher, R.
 Experimentelle Untersuchungen zur Technologie der Kugelherstellung
 1989 · 110 Abb. · 200 Seiten · ISBN 3-540-51301-8

19. Hausler, H.-J.
 Rechnerunterstützte Planung flexibler Montagesysteme
 1989 · 43 Abb. · 154 Seiten · ISBN 3-540-51723-5

20. Kirchhoff, P.
 Ermittlung modularer Parameter aus Übertragungsfrequenzgangen
 1989 · 57 Abb. · 152 Seiten · ISBN 3-540-51724-3

21. Seiler, Ch.
 Beitrag für ein Zerspanprozessmodell Metallhandsägen
 1990 · 89 Abb. · 166 Seiten · ISBN 3-540-51668-1

22. Kasten, K.
 Positionsbestimmung von Objekten in der Montage- und Fertigungautomatisierung
 1990 · 94 Abb. · 167 Seiten · ISBN 3-540-51679-7

23. Pieker, S.
 Entwicklung eines integrierten NC-Planungssystems
 1990 · 66 Abb. · 180 Seiten · ISBN 3-540-51880-0

24. Schumann, R.
 Nachgiebige Werkzeugauflagen für die automatische Montage
 1990 · 71 Abb. · 156 Seiten · ISBN 3-540-52138-0

25. W shaft, P.
 Simulation als Werkzeug in der Handhabungstechnik
 1990 · 125 Abb. · 170 Seiten · ISBN 3-540-52231-X

26. Eickelhahn, P.
 Rechnerunterstützte experimentelle Modulanalyse mittels gestufter Sinussignale
 1990 · 79 Abb. · 156 Seiten · ISBN 3-540-52451-7

27. Prazek, J.
 Computerunterstützte Planung von chirurgischen Eingriffen in der Orthopädie
 1990 · 113 Abb. · 164 Seiten · ISBN 3-540-52543-2
28 Teich, K.
Prozesskommunikation und Rechnernetzwerk in der Produktion
1991 • 52 Abb. • 158 Seiten • ISBN 3-540-52648-8
29 Prang, W.
Rechnergestützte und graphische Planung manueller und teilautomatisierter Arbeitsplätze
1990 • 50 Abb. • 153 Seiten • ISBN 3-540-52496-6
30 Tauer, A.
Modellbildung kinematischer Strukturen als Komponente der Montageplanung
1990 • 93 Abb. • 196 Seiten • ISBN 3-540-53011-X
31 Jäger, A.
Systematische Planung komplexer Produktionssysteme
1991 • 75 Abb. • 148 Seiten • ISBN 3-540-53021-5
32 Hartberger, H.
Wissensbasierte Simulation komplexer Produktionssysteme
1991 • 50 Abb. • 154 Seiten • ISBN 3-540-53326-5
33 Tuzek, H.
Inspektion von Karosserieelementen auf Risse und Einschnitte mittels Methoden der Bildverarbeitung
1983 • 125 Abb. • 179 Seiten • ISBN 3-540-53855-4
34 Fischbacher, J.
Planungsszenarien zur störungstechnischen Optimierung von Reihenfertigungsanlagen
1991 • 60 Abb. • 106 Seiten • ISBN 3-540-53027-X
35 Möser, D.
3D-Echtzeitkollisionsschutz für Drehmaschinen
1991 • 96 Abb. • 177 Seiten • ISBN 3-540-53667-8
36 Neber, H.
Aufbau und Einsatz eines mobilen Robots mit unabhängigem Lokomotions- und Manipulationskomponente
1991 • 85 Abb. • 138 Seiten • ISBN 3-540-54215-7
37 Kapuc, Th.
Wissensbasiertes Leitsystem zur Steuerung flexibler Fertigungsanlagen
1991 • 68 Abb. • 156 Seiten • ISBN 3-540-54260-4
38 Mundorf, Ut.
Dynamisches Verhalten von Kreissägen
1991 • 109 Abb. • 159 Seiten • ISBN 3-540-54365-1
39 Götze, R.
Strukturierte Planung flexibler automatisierter Montagesysteme für flächige Bauteile
1991 • 188 Abb. • 201 Seiten • ISBN 3-540-54401-1
40 Koppler, Th.
3D-geprägungs- und interaktive Arbeitsplanung - ein Ansatz zur Aufbereitung der Arbeitssteilung
1990 • 160 Abb. • 126 Seiten • ISBN 3-540-54436-4
41 Schmidt, M.
Konzeption und Einsatzplanung flexibler automatisierter Montagesysteme
1992 • 108 Abb. • 186 Seiten • ISBN 3-540-55025-9
42 Burger, C.
Produktionsregelung mit entscheidungsunterstützenden Informationssystemen
1992 • 94 Abb. • 186 Seiten • ISBN 3-540-55875-5
43 Heßmann, J.
Methodik zur Planung der automatischen Montage von nicht flüchtigen Bauteilen
1992 • 73 Abb. • 168 Seiten • ISBN 3-540-55520-0
44 Patry, M.
Systematische Planung komplexer Produktionssysteme
1991 • 106 Abb. • 139 Seiten • ISBN 3-540-56374-6
45 Schönzler, W.
Integrierte Diagnose in Produktionssystemen
1987 • 82 Abb. • 156 Seiten • ISBN 3-540-55375-4
46 Bick, W.
Systematische Planung hybrider Montagesysteme unter Berücksichtigung der Ermittlung des optimalen Automatisierungsgrades
1992 • 70 Abb. • 156 Seiten • ISBN 3-540-55377-0
47 Gebauer, L.
Wissensbasierte Simulation komplexer Produktionssysteme
1992 • 84 Abb. • 156 Seiten • ISBN 3-540-55378-9
48 Schindler, N.
Methoden zur qualitätssicherung in Produktionssystemen
1992 • 77 Abb. • 176 Seiten • ISBN 3-540-54552-9
49 Wiskizer, J.
Methoden zur qualitätssicherung in Produktionssystemen
1992 • 77 Abb. • 176 Seiten • ISBN 3-540-54551-2
50 Garnich, F.
Wissensbasierte Planung flexibler automatisierter Montagesysteme
1991 • 110 Abb. • 104 Seiten • ISBN 3-540-55513-7
51 Eberle, P.
Datenbankgestützte Planung flexibler automatisierter Montagesysteme
1992 • 88 Abb. • 150 Seiten • ISBN 3-540-44441-2
52 Glaas, W.
Wissensbasierte Simulation komplexer Montagesysteme
1992 • 67 Abb. • 146 Seiten • ISBN 3-540-55749-0
53 Heilmann, H.
Wissensbasierte Planung flexibler automatisierter Montagesysteme
1992 • 67 Abb. • 135 Seiten • ISBN 3-540-55836-6
54 Lampert, Ch.
Unterstützung der Planung flexibler automatisierter Montagesysteme
1992 • 75 Abb. • 139 Seiten • ISBN 3-540-55751-2
55 Scheurer, G.
Unterstützung der Planung flexibler automatisierter Montagesysteme
1992 • 77 Abb. • 176 Seiten • ISBN 3-540-55377-0
56 Brand, H.
Unterstützung der Planung flexibler automatisierter Montagesysteme
1992 • 77 Abb. • 176 Seiten • ISBN 3-540-55377-0
57 Wenzel, A.
Wissensbasierte Planung flexibler automatisierter Montagesysteme
1992 • 77 Abb. • 176 Seiten • ISBN 3-540-55377-0
58 Hansmaier, H.
Unterstützung der Planung flexibler automatisierter Montagesysteme
1992 • 77 Abb. • 176 Seiten • ISBN 3-540-55377-0
59 Dilling, U.
Unterstützung der Planung flexibler automatisierter Montagesysteme
1992 • 77 Abb. • 176 Seiten • ISBN 3-540-55377-0
60 Strahmayer, R.
Rechnergestützte Auswahl und Konfiguration von Zwillingsanlagen
1993 · 98 Abb. · 152 Seiten · ISBN 3-540-54832-X
61 Glaes, J.
Standardisierter Aufbau anwendungsspezifischer Zeilenumschaltsysteme
1993 · 90 Abb. · 145 Seiten · ISBN 3-540-58690-5
62 Rechnergestützte Simulationswerkzeuge zur Effizienzsteigerung des Industriebetriebseinzeits
1994 · 91 Abb. · 146 Seiten · ISBN 3-540-54889-1
63 Dirndorfer, A.
Robotersysteme zur felderbausynchronen Montage
1995 · 78 Abb. · 144 Seiten · ISBN 3-540-57031-4
64 Wiedemann, M.
Simulationsverfahren für die Planung und Erstellung von Produktionsanlagen
1993 · 81 Abb. · 137 Seiten · ISBN 3-540-57177-9
65 Weierkhaus, Ch.
Rechnergestützte Simulation von Arbeitsprozessen
1994 · 94 Abb. · 148 Seiten · ISBN 3-540-57264-8
66 Kemmeier, G.
Optimierung von Produktionsanlagen
1995 · 87 Abb. · 144 Seiten · ISBN 3-540-57034-9
67 Kugel, F.
Einsatz neuerer Techniken zur effizienten Planung von Produktionsprozessen
1994 · 76 Abb. · 144 Seiten · ISBN 3-540-54852-9
68 Schwer, H.
Simulationsgestützte CAD/CAM-Kopplung für die 3D-Anlageplanung
1993 · 96 Abb. · 140 Seiten · ISBN 3-540-57657-4
69 Viethers, U.
Systematik zur Planung von flexiblen Fertigungsanlagen
1994 · 78 Abb. · 142 Seiten · ISBN 3-540-57769-7
70 Seifert, M.
Automatische Betriebs- und Parametereinstellung
1995 · 82 Abb. · 146 Seiten · ISBN 3-540-57038-2
71 Amann, W.
Eine Simulationsumgebung für Planung und Betrieb von Produktionsanlagen
1994 · 71 Abb. · 129 Seiten · ISBN 3-540-57924-9
72 Scholz, M.
Rechnergestützte Projektplanung und Koordinationsverfahren für die Fertigungsvorfeld
1997 · 63 Abb. · 138 Seiten · ISBN 3-540-58023-2
73 Wellding, A.
Effiziente Planung und bearbeitung von Produktionsprozessen
1994 · 60 Abb. · 133 Seiten · ISBN 3-540-56000-0
74 Zeitmeier, H.
Verfahren zur Simulation von flexiblen Produktionsprozessen
1993 · 80 Abb. · 143 Seiten · ISBN 3-540-56134-0
75 Lint, M.
Auftragsabwicklung für Konstruktion und Arbeitsplanung
1994 · 66 Abb. · 147 Seiten · ISBN 3-540-56221-5
76 Zipper, B.
Automatisches Betriebstechnik- und Konfiguration von Zwillingsanlagen
1994 · 64 Abb. · 147 Seiten · ISBN 3-540-58222-3
77 Reith, P.
Programmierung und Simulation von Zeilenabläufen in der Arbeitsbereitstellung
1995 · 51 Abb. · 130 Seiten · ISBN 3-540-58223-1
78 Ergel, A.
Strömungstechnische Optimierung von Produktionsanlagen
1994 · 68 Abb. · 160 Seiten · ISBN 3-540-58258-4
79 Zeh, M.
Druck- und Spritzgießtechnik
1995 · 95 Abb. · 186 Seiten · ISBN 3-540-58624-5
80 Zwemer, N.
Technologisches Prozeßmodell für die Kugelschleifbearbeitung
1994 · 65 Abb. · 150 Seiten · ISBN 3-540-58764-2
81 Romanow, P.
Konstruktionsbegleitende Kalkulation von Werkzeugmaschinen
1995 · 66 Abb. · 151 Seiten · ISBN 3-540-58771-3
82 Kleinert, T.
Integrierte Qualitätssicherung in flexiblen Fertigungssystemen
1995 · 71 Abb. · 136 Seiten · ISBN 3-540-58772-1
83 Huber, A.
Arbeitsflächenplanung in Produktionsanlagen
1995 · 87 Abb. · 152 Seiten · ISBN 3-540-58773-X
84 Brink, G.
Aufwendungsminimierung als Grundlage für die Gestaltung von flexiblen Produktionsanlagen
1996 · 64 Abb. · 137 Seiten · ISBN 3-540-58798-4
85 Simon, D.
Optimierung von Produktionsanlagen
1996 · 77 Abb. · 132 Seiten · ISBN 3-540-58942-2
86 Nederlof, V.
Systematische Planung und Gestaltung von flexiblen Produktionsanlagen
1996 · 94 Abb. · 188 Seiten · ISBN 3-540-58955-8
87 Reckmann, M.
Flexibilisierung von Produktionssystemen
1995 · 83 Abb. · 168 Seiten · ISBN 3-540-58999-6
88 Litner, S.
Konzept einer integrierten Produktentwicklung
1995 · 67 Abb. · 168 Seiten · ISBN 3-540-59116-1
89 Eber, H.
Integrierte Planung von Informationssystemen und rechnergestützt Büro- und Rechnungswesen
1995 · 62 Abb. · 158 Seiten · ISBN 3-540-58944-6
90 Schmidt, U.
Prozeßorientierte Organisation der Arbeitsabwicklung in mittelständischen Unternehmen
1995 · 80 Abb. · 188 Seiten · ISBN 3-540-58373-3
91 Dietrich, A.
Recycling- und Integrationstechnik
1995 · 68 Abb. · 146 Seiten · ISBN 3-540-58120-1
Seminarberichte iwb

herausgegeben von Prof. Dr.-Ing. Gunther Reinhart und Prof. Dr.-Ing. Michael Zäh, Institut für Werkzeugmaschinen und Betriebswissenschaften der Technischen Universität München

Seminarberichte iwb sind erhältlich im Buchhandel oder beim Herbert Utz Verlag, München, Fax 089-277791-01, info@utz.de
47 Virtuelle Produktion · Prozeß- und Produktionsimulation 131 Seiten · ISBN 3-89675-047-X
48 Sicherheitstechnik an Werkzeugmaschinen 106 Seiten · ISBN 3-89675-048-8
49 Rapid Prototyping · Methoden für die reaktionsfähige Produkttwicklung 150 Seiten · ISBN 3-89675-049-6
50 Rapid Manufacturing · Methoden für die reaktionsfähige Produktion 121 Seiten · ISBN 3-89675-050-X
51 Flexibles Kleben und Dichten · Produkt- & Prozeßgestaltung, Mischverbindungen, Qualitätssicherung 137 Seiten · ISBN 3-89675-051-8
52 Rapid Manufacturing · Schnelle Herstellung von Klein- und Prototypenserien 124 Seiten · ISBN 3-89675-052-6
53 Mischverbindungen · Werkstoffauswahl, Verfahrensauswahl, Umsetzung 107 Seiten · ISBN 3-89675-054-2
54 Virtuelle Produktion · Integrierte Prozess- und Produktionsimulation 133 Seiten · ISBN 3-89675-055-0
55 Rapid Manufacturing · Schnelle Herstellung aus Klein- und Prototypenserien 124 Seiten · ISBN 3-89675-056-9
56 Virtuelle Produktion – Ablaufsimulation als planungsbegleitendes Werkzeug 150 Seiten · ISBN 3-89675-057-7
58 Rapid Manufacturing · Schnelle Herstellung qualitativ hochwertiger Bauteile oder Kleinserien 169 Seiten · ISBN 3-89675-059-3
59 Automatisierte Mikromontage · Werkzeuge und Fügetechnologien für die Mikrosystemtechnik 114 Seiten · ISBN 3-89675-060-X
60 Mechatronische Produktionssysteme · Genauigkeit gezielt entwickeln 131 Seiten · ISBN 3-89675-061-2
61 Nicht erschienen – wird nicht erscheinen
62 Rapid Technologien · Anspruch – Realität – Technologien 100 Seiten · ISBN 3-89675-062-0
63 Fabrikplanung 2002 · Visionen – Umsetzung – Werkzeuge 124 Seiten · ISBN 3-89675-063-8
64 Mischverbindungen · Einsatz und Innovationspotenzial 143 Seiten · ISBN 3-89675-064-6
65 Fabrikplanung 2003 – Basis für Wachstum · Erfahrungen Werkzeuge Visionen 136 Seiten · ISBN 3-89675-065-4
66 Mit Rapid Technologien zum Aufschwung · Neue Rapid Technologien und Verfahren, Neue Qualitäten, Neue Möglichkeiten, Neue Anwendungsfelder 185 Seiten · ISBN 3-89675-066-2
67 Mechatronische Produktionssysteme · Die Virtuelle Werkzeugmaschine: Mechatronisches Entwicklungsvorgehen, Integrierte Modellbildung, Applikationsfelder 148 Seiten · ISBN 3-89675-067-0
68 Virtuelle Produktion · Nutzpotenziale im Lebenszyklus der Fabrik 139 Seiten · ISBN 3-89675-068-8
69 Kooperationsmanagement in der Produktion · Visionen und Methoden zur Kooperation – Geschäftsmodule und Rechtsformen für die Kooperation – Kooperation entlang der Wertschöpfungskette 134 Seiten · ISBN 3-89675-069-6
70 Mechatronik · Strukturdynamik von Werkzeugmaschinen 161 Seiten · ISBN 3-89675-070-4
71 Klebtechnik · Zerstörungsfreie Qualitätssicherung beim flexibel automatisierten Kleben und Dichten ISBN 3-89675-071-2 · vergriffen
72 Fabrikplanung 2004 · Erfolgsfaktor im Wettbewerb · Erfahrungen – Werkzeuge – Visionen ISBN 3-89675-072-0 · vergriffen
73 Rapid Manufacturing · Vom Prototyp zur Produktion · Erwartungen – Erfahrungen – Entwicklungen 179 Seiten · ISBN 3-89675-073-9
74 Virtuelle Produktionssystemplanung · Virtuelle Inbetriebnahme und Digitale Fabrik 133 Seiten · ISBN 3-89675-074-7
75 Nicht erschienen – wird nicht erscheinen
76 Berührungslose Handhabung · Vom Wafer zur Glasingine, von der Kapsel zur aseptischen Ampulle 95 Seiten · ISBN 3-89675-076-3
77 ERP-Systeme · Einführung in die betriebliche Praxis · Erfahrungen, Best Practices, Visionen 153 Seiten · ISBN 3-89675-077-7
78 Mechatronik · Trends in der interdisziplinären Entwicklung von Werkzeugmaschinen 155 Seiten · ISBN 3-89675-078-X
79 Produktionsmanagement 267 Seiten · ISBN 3-89675-079-8
80 Rapid Manufacturing · Fertigungsverfahren für alle Ansprüche 154 Seiten · ISBN 3-89675-080-1
81 Rapid Manufacturing · Heutige Trends – Zukunftige Anwendungsfelder 172 Seiten · ISBN 3-89675-081-9
82 Produktionsmanagement · Herausforderung Variantenmanagement 100 Seiten · ISBN 3-89675-082-8
83 Mechatronik · Optimierungspotential der Werkzeugmaschine nutzen 160 Seiten · ISBN 3-89675-083-6
84 Virtuelle Inbetriebnahme · Von der Kür zur Pflicht? 104 Seiten · ISBN 978-3-89675-084-3
85 3D-Erfahrungsforum · Innovation im Werkzeug- und Formenbau 375 Seiten · ISBN 978-3-89675-085-0
86 Rapid Manufacturing · Erfolgreich produzieren durch innovative Fertigung 162 Seiten · ISBN 978-3-89675-086-7
87 Produktionsmanagement · Schlank im Mittelstand 102 Seiten · ISBN 978-3-89675-087-4
88 Mechatronik · Vorschuss durch Simulation 134 Seiten · ISBN 978-3-89675-088-4
89 RFID in der Produktion · Wertschöpfung effizient gestalten 122 Seiten · ISBN 978-3-89675-089-1
<table>
<thead>
<tr>
<th>ID</th>
<th>Autor</th>
<th>Titel</th>
<th>Seitenzahl</th>
<th>Abbildungen</th>
<th>Format</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>154</td>
<td>Wolfgang Rudorfer</td>
<td>Eine Methode zur Qualifizierung von produzierenden Unternehmen für Kompetenznetzwerke</td>
<td>207</td>
<td>89</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0037-6</td>
</tr>
<tr>
<td>155</td>
<td>Hans Meier</td>
<td>Verteilte kooperative Steuerung maschinennaher Abläufe</td>
<td>162</td>
<td>85</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0044-9</td>
</tr>
<tr>
<td>156</td>
<td>Gerhard Nowak</td>
<td>Informationstechnische Integration des industriellen Service in das Unternehmen</td>
<td>203</td>
<td>95</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0055-4</td>
</tr>
<tr>
<td>157</td>
<td>Martin Werner</td>
<td>Simulationsgestützte Reorganisation von Produktions- und Logistikprozessen</td>
<td>191</td>
<td></td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0058-9</td>
</tr>
<tr>
<td>158</td>
<td>Bernhard Lenz</td>
<td>Finite Elemente-Modellierung des Laserstrahlsschweißens für den Einsatz in der Fertigungsplanung</td>
<td>150</td>
<td>47</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0094-5</td>
</tr>
<tr>
<td>159</td>
<td>Stefan Grunwald</td>
<td>Methode zur Anwendung der flexiblen integrierten Produktentwicklung und Montageplanung</td>
<td>206</td>
<td>80</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0095-3</td>
</tr>
<tr>
<td>160</td>
<td>Josef Gartner</td>
<td>Qualitätssicherung bei der automatisierten Applikation hochviskoser Dichtungen</td>
<td>165</td>
<td>74</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0096-1</td>
</tr>
<tr>
<td>161</td>
<td>Wolfgang Zeller</td>
<td>Gesamtheitliches Sicherheitskonzept für die Antriebs- und Steuerungstechnik bei Werkzeugmaschinen</td>
<td>192</td>
<td>64</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0100-3</td>
</tr>
<tr>
<td>162</td>
<td>Michael Loferer</td>
<td>Rechnergestützte Gestaltung von Montagesystemen</td>
<td>178</td>
<td>80</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0118-6</td>
</tr>
<tr>
<td>163</td>
<td>Jörg Fährer</td>
<td>Ganzehtzliche Optimierung des indirekten Metall-Lasersinterprozesses</td>
<td>176</td>
<td>69</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0124-0</td>
</tr>
<tr>
<td>164</td>
<td>Jürgen Höppner</td>
<td>Verfahren zur berührungslosen Handhabung mittels leistungsstarker Schallwandler</td>
<td>132</td>
<td>24</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0125-9</td>
</tr>
<tr>
<td>165</td>
<td>Hubert Götte</td>
<td>Entwicklung eines Assistenzrobotsystems für die Knieendoprothetik</td>
<td>258</td>
<td>123</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0126-7</td>
</tr>
<tr>
<td>166</td>
<td>Martin Weißenberger</td>
<td>Optimierung der Bewegungsdynamik von Werkzeugmaschinen im rechnergestützten Entwicklungsprozess</td>
<td>210</td>
<td>86</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0138-0</td>
</tr>
<tr>
<td>167</td>
<td>Dirk Jacob</td>
<td>Verfahren zur Positionierung unterseitenstrukturierter Bausteine in der Mikrosystemtechnik</td>
<td>200</td>
<td>82</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0142-9</td>
</tr>
<tr>
<td>168</td>
<td>Ulrich Roßgoderer</td>
<td>System zur effizienten Layout- und Prozessplanung von hybriden Montageanlagen</td>
<td>175</td>
<td>82</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0154-2</td>
</tr>
<tr>
<td>169</td>
<td>Robert Klingel</td>
<td>Anziehverfahren für hochfeste Schraubenverbindungen auf Basis akustischer Emissionen</td>
<td>144</td>
<td>82</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0174-7</td>
</tr>
<tr>
<td>170</td>
<td>Paul Jens Peter Ross</td>
<td>Bestimmung des wirtschaftlichen Automatisierungsgrades von Montageprozessen in der frühen Phase der Montageplanung</td>
<td>144</td>
<td>38</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0191-7</td>
</tr>
<tr>
<td>171</td>
<td>Stefan von Praun</td>
<td>Toleranzanalyse nachgiebiger Baugruppen im Produktenstehungsprozess</td>
<td>250</td>
<td>82</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0202-6</td>
</tr>
</tbody>
</table>
Gestaltung kurzfristiger und unternehmensübergreifender Engineering-Kooperationen

Methoden zur Optimierung der Wertschöpfungskette mittelständischer Betriebe

Interdisziplinäre Methoden für die integrierte Entwicklung komplexer mechatronischer Systeme

Ein Beitrag zur Entwicklung telepräsenter Montagesysteme

Methoden zur Definition und Bewertung von Anwendungsfeldern für Kompetenznetzwerke

Ein ganzheitliches Konzept zum Einsatz des indirekten Metall-Lasersinterns für das Druckgießen

Ein Vorgehensmodell zur Auswahl von Konturfertigungsverfahren für das Rapid Tooling

Methodik zur strukturierten Auswahl von Auftragsabwicklungssystemen

Konzept zur rechnergestützten Integration von Produktions- und Gebäudeplanung in der Fabrikgestaltung

Dynamisches Kostenmanagement in kompetenzzentrierten Unternehmensnetzwerken

Method zur Kompensation betriebsabhängiger Einflüsse auf die Absolutgenauigkeit von Industrierobotern

Effizienzsteigerung in der automatisierten Montage durch aktive Nutzung mechatronischer Produktkomponenten

Planung und Kapazitätsabstimmung stückzahlflexibler Montagesysteme

Beitrag zur Entwicklung generativer Fertigungsverfahren für das Rapid Manufacturing

Betriebsbegleitende Prozessplanung in der Montage mit Hilfe der Virtuellen Produktion am Beispiel der Automobilindustrie
<table>
<thead>
<tr>
<th>Seite</th>
<th>Autor</th>
<th>Titel</th>
<th>Jahr</th>
<th>Seitenzahl</th>
<th>Abbildungen</th>
<th>Maße</th>
<th>ISBN</th>
</tr>
</thead>
<tbody>
<tr>
<td>189</td>
<td>Thomas Mosandl</td>
<td>Qualitätssteigerung bei automatisiertem Klebstoffauftrag durch den Einsatz optischer Konturfolgesysteme</td>
<td>2005</td>
<td>182</td>
<td>58</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0471-1</td>
</tr>
<tr>
<td>190</td>
<td>Christian Patron</td>
<td>Konzept für den Einsatz von Augmented Reality in der Montageplanung</td>
<td>2005</td>
<td>150</td>
<td>61</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0474-6</td>
</tr>
<tr>
<td>191</td>
<td>Robert Cisek</td>
<td>Planung und Bewertung von Rekonfigurationsprozessen in Produktionssystemen</td>
<td>2005</td>
<td>200</td>
<td>64</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0475-4</td>
</tr>
<tr>
<td>192</td>
<td>Florian Auer</td>
<td>Methode zur Simulation des Laserstrahlschweißens unter Berücksichtigung der Ergebnisse vorangegangener Umformsimulationen</td>
<td>2006</td>
<td>160</td>
<td>65</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0485-1</td>
</tr>
<tr>
<td>193</td>
<td>Carsten Selke</td>
<td>Entwicklung von Methoden zur automatischen Simulationsmodellgenerierung</td>
<td>2006</td>
<td>137</td>
<td>53</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0495-9</td>
</tr>
<tr>
<td>194</td>
<td>Markus Seefried</td>
<td>Simulation des Prozessschrittes der Wärmebehandlung beim Indirekten-Metall-Lasersintern</td>
<td>2005</td>
<td>216</td>
<td>82</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0503-3</td>
</tr>
<tr>
<td>195</td>
<td>Wolfgang Wagner</td>
<td>Fabrikplanung für die standortübergreifende Kostensenkung bei marktnaher Produktion</td>
<td>2006</td>
<td>208</td>
<td>43</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0586-6</td>
</tr>
<tr>
<td>196</td>
<td>Christopher Ulrich</td>
<td>Erhöhung des Nutzungsgrades von Laserstrahlquellen durch Mehrfach-Anwendungen</td>
<td>2006</td>
<td>178</td>
<td>74</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0590-4</td>
</tr>
<tr>
<td>197</td>
<td>Johann Här tl</td>
<td>Prozessgaseinfluss beim Schweißen mit Hochleistungsdiode Laser</td>
<td>2006</td>
<td>140</td>
<td>55</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0611-0</td>
</tr>
<tr>
<td>198</td>
<td>Bernd Hartmann</td>
<td>Die Bestimmung des Personalbedarfs für den Materialtransport in Abhängigkeit von Produktionsflaeche und -menge</td>
<td>2006</td>
<td>208</td>
<td>105</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0615-3</td>
</tr>
<tr>
<td>199</td>
<td>Michael Schilp</td>
<td>Auslegung und Gestaltung von Werkzeugen zum berührungslosen Greifen kleiner Bauteile in der Mikromontage</td>
<td>2006</td>
<td>130</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0631-5</td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>Florian Manfred Grätz</td>
<td>Teilautomatische Generierung von Stromlauf- und Fluidplänen für mechatronische Systeme</td>
<td>2006</td>
<td>192</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0643-9</td>
<td></td>
</tr>
<tr>
<td>201</td>
<td>Dieter Eireiner</td>
<td>Prozessmodelle zur statischen Auslegung von Anlagen für das Friction Stir Welding</td>
<td>2006</td>
<td>214</td>
<td>20,5 x 14,5 cm</td>
<td>3-8316-0650-1</td>
<td></td>
</tr>
<tr>
<td>202</td>
<td>Gerhard Volkwein</td>
<td>Konzept zur effizienten Bereitstellung von Steuerungsfunktionalität für die NC-Simulation</td>
<td>2007</td>
<td>192</td>
<td>20,5 x 14,5 cm</td>
<td>978-3-8316-0668-9</td>
<td></td>
</tr>
<tr>
<td>203</td>
<td>Sven Roeren</td>
<td>Komplexitätsvariable Einflussgrößen für die bauteilbezogene Struktursimulation thermischer Fertigungsprozesse</td>
<td>2007</td>
<td>224</td>
<td>20,5 x 14,5 cm</td>
<td>978-3-8316-0680-1</td>
<td></td>
</tr>
<tr>
<td>204</td>
<td>Henning Rudolf</td>
<td>Wissensbasierte Montageplanung in der Digitalen Fabrik am Beispiel der Automobilindustrie</td>
<td>2007</td>
<td>200</td>
<td>20,5 x 14,5 cm</td>
<td>978-3-8316-0697-9</td>
<td></td>
</tr>
<tr>
<td>205</td>
<td>Stella Clarke-Griebsch</td>
<td>Overcoming the Network Problem in Telepresence Systems with Prediction and Inertia</td>
<td>2007</td>
<td>150</td>
<td>20,5 x 14,5 cm</td>
<td>978-3-8316-0701-3</td>
<td></td>
</tr>
<tr>
<td>206</td>
<td>Michael Ehrenstraßer</td>
<td>Sensoreinsatz in der telepräsenten Mikromontage</td>
<td>2008</td>
<td>160</td>
<td>20,5 x 14,5 cm</td>
<td>978-3-8316-0743-3</td>
<td></td>
</tr>
</tbody>
</table>
Rainer Schack
Methodik zur bewertungsorientierten Skalierung der Digitalen Fabrik
2008 · 248 Seiten · 20,5 x 14,5 cm · ISBN 978-3-8316-0748-8

Wolfgang Sudhoff
Methodik zur Bewertung standortübergreifender Mobilität in der Produktion
2008 · 276 Seiten · 20,5 x 14,5 cm · ISBN 978-3-8316-0749-5

Stefan Müller
Methodik für die entwicklungs- und planungsbegleitende Generierung und Bewertung von Produktionsalternativen
2008 · 240 Seiten · 20,5 x 14,5 cm · ISBN 978-3-8316-0750-1

Ulrich Kohler
Methodik zur kontinuierlichen und kostenorientierten Planung produktionstechnischer Systeme
2008 · 232 Seiten · 20,5 x 14,5 cm · ISBN 978-3-8316-0753-2