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Chapter 1

Introduction

The Road goes ever on and on
Down from the door where it began.
Now far ahead the Road has gone,
And I must follow, if I can,
Pursuing it with eager feet,
Until it joins some larger way
Where many paths and errands meet.
And whither then? I cannot say.

J.R.R. Tolkien, The Lord of the Rings

1.1 Motivation

Integrating compression in Database Management Systems (DBMS) has not received very
much attention so far. The main reason for this is that the benefits of compression in
traditional, relational DBMSs (RDBMS) are rather limited due to the nature of relational
data which typically consists of small units like numbers or short strings, which have a
size of several bytes rather than kilo- or even megabytes. Compressing these small units
individually results in very poor space savings, whereas grouping units into compounds
and then compressing them improves the space savings per unit considerably, but burdens
the system with much higher random access times, as will be shown below. This is often
unacceptable since the resulting system is usually expected not to be noticeably slower
despite the compression/decompression overhead, but possibly even faster due to reduced
data size which allows more information to be transfered in fewer IO operations.
Compression is always a tradeoff between savings in storage space and compression

overhead, where on average complex compression algorithms save more space while taking
longer, whereas simpler algorithms compress worse but are faster; it is therefore obvious
that in order to minimize compression overhead, simple algorithms should be chosen. We
will also see that fine access granularity, as is typically required for RDBMSs, is another
point in favour of simple compression variants as well. In contrast to RDBMSs, array
DBMSs (ADBMS) deal with much larger units which makes compression considerably
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6 CHAPTER 1. INTRODUCTION

more efficient as well as more attractive for the space savings alone; it also encourages the
use of more advanced compression techniques, even lossy ones which have never been an
option in RDBMSs, in the same way that lossy compression is viable for images but not
for text.
Compression aims to minimize the redundancy in data by finding a representation for

the data that requires less storage. This is often an adaptive process that performs better
the more data it processes, i.e. a large text compressed as a whole will usually have a higher
compression ratio than any subset of the text, depending on the compression algorithm
used. Analogously, while all data contained in a relational table may compress well in
its entirety, the individual attribute values are typically too short to allow gathering any
statistically meaningful information to aid compression. The techniques used for the com-
pression of single attribute values are therefore very basic since more complex approaches
like adaptive arithmetic coding can’t accumulate enough statistical data to outperform the
simpler and therefore faster techniques.
The alternative of grouping together attribute values to allow more efficient compres-

sion severely compromises execution time because accessing any value contained in such
a compound structure requires uncompressing the whole, or at least all data up to the
desired value, since compressed data normally does not allow random access any more.
Moreover, updating data in a compressed format is not localized, i.e. changing a local part
in the uncompressed data usually implies global changes of the compressed data, typi-
cally from the point corresponding to the start of the update of the uncompressed data to
the end of the compressed data stream. Caching uncompressed compounds can alleviate
this phenomenon in some cases, but introduces other problems like an increase of mem-
ory requirements as well as more complex IO and transaction management. Considering
these points it comes as no surprise that there has been little research on compression in
traditional DBMSs and the work done on the subject has focussed on relatively simple
algorithms, some of which will be introduced in the Related Work section on page 10.
Not all DBMSs are relational, nor do all systems require as fine an access granularity,

however. Array DBMSs deal with rastered data of varied dimensionality and differ con-
siderably from traditional DBMSs both in terms of access granularity and data volume
typically transfered to clients. Whereas the access granularity of RDBMs is in the area
of bytes, for array DBMSs it is in the area of kilobytes or even megabytes, which makes
these systems very interesting for compressed storage. The high data volume transferred
to client applications also makes transfer compression a viable approach. Moreover, for
multidimensional data there are often local correlations between data samples which can
be exploited by compression, like for instance a rectangular area of uniform colour in an
image which will compress better if the compression algorithm is aware of the 2D nature of
the source data rather than being applied to a sequence of 1D data sequences. Things like
this are usually resolved in a model (or transformation) layer which transforms the original
data according to a data model into a different (possibly similar, i.e. lossy) representation
which compresses better.
RDBMSs can only handle vector data efficiently, which can be translated into tuples

containing coordinate attributes and value attributes. However, many kinds of data can be
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modelled efficiently as multidimensional arrays, especially dense data, of course; but with
ever increasing memory capacity, even modelling sparse data as multidimensional arrays
becomes feasible, especially with the addition of compression, since sparse representation in
the form of vectorized data is a kind of offset compression in itself. In [44], for instance, this
development is quoted in the context of visualization to predict a move away from surface-
oriented models (vector) to volume-oriented models (arrays) in a similar way as raster
images have grown ever more popular compared to vector graphics in many cases, especially
when it comes to digital representations of real world phenomena, typical examples of which
are sampled analogue data such as images, volumetric data like tomograms, or simulation
data (spatial or spatio-temporal, like for instance fluid flow or climate simulations). The
disadvantages of dense modelling, foremost of all memory requirements, are becoming less
relevant as more memory is readily available; in many cases the vector data used in e.g.
visualization has to be calculated from a dense representation like a 3D data cube anyway
(e.g. isosurface algorithms [34] which calculate a triangulated surface from 3D array data).
At the same time the advantages of dense data modelling are becoming more and more
attractive in many application areas:

• compact storage (at least for dense data), i.e. no coordinate overhead because the
coordinates are implicitly given by the offset in the data and the linearization scheme;

• constant access time of arbitrary coordinates independently of the data distribution,
which also includes finding neighbouring cells in constant time.

Returning to the example of visualization, volume rendering has considerable advan-
tages compared to surface-oriented (= vector-oriented) approaches as it allows exploring
internal structures [44]. In numerical simulation, using arrays rather than vectors for
storage allows simpler and more efficient algorithms for the solution of partial differen-
tial equation systems. Using hierarchical grids makes it possible to use more sample points
within areas of rapid change than in areas with little activity, thereby addressing the major
problem of dense modelling; wavelet-based compression implicitly uses a similar approach,
as will be shown later in section 3.3.
Naturally, dense modelling can’t replace vector data entirely, especially when the co-

ordinate system is not discrete but real-valued as in CAD systems or to a certain extent
documents, although thanks to specialized compression techniques documents are actually
becoming a borderline case [8]; it must be added, however, that rasterized documents are
mostly of interest to digital libraries where the vector data is not available or never existed
in the first place. Looking especially at the developments in visualization and numerical
simulation, there is a clear trend away from vector data towards array data.
The object of this work was the implementation of a compression engine for the multi-

dimensional Array DBMS RasDaMan, which was originally developed at FORWISS and
supports data of arbitrary dimensionality and base type. Data is modelled as multidimen-
sional arrays, i.e. dense storage; the addition of compression capabilities to the DBMS also
allows sparse data to be handled efficiently, however. There is a wealth of literature on
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specialized compression, especially the compression of raster images, i.e. 2D arrays over a
small number of possible base types, but there is scarcely any work on integrating these
techniques into DBMSs or similar products dealing with multidimensional arrays. Further-
more, the approaches are usually restricted to a specific number of dimensions – foremost
of all 2D for images – which requires generalization before they can be integrated into a
truly multidimensional system. The purpose of this thesis is

1. the design of a generic compression framework for storage- and transfer-compression
and its integration into the kernel of a multidimensional Array DBMS, RasDaMan
in this case;

2. the evaluation of compression classes and the inclusion of promising candidates in
the compression framework. The main focus here lies on techniques developed in
image compression, because many MDD show exactly the same properties exploited
in image compression, foremost of all local smoothness caused by correlations between
neighbouring cells;

3. provide compression algorithms with different properties dependening on the appli-
cation. For transfer compression, (de)compression overhead is usually the decisive
factor, whereas for long-term storage it is the compression ratio. For mostly read-
only data an algorithm with asymmetric complexity may be ideal, such as (adaptive)
dictionary techniques where compression can take considerably longer than decom-
pression.

4. performance measurements on the resulting system and evaluation of the various
compression classes with respect to the data types they are applied to and the sce-
narios they are used in (for instance storage compression vs. transfer compression).

The goal in integrating a compression engine into the DBMS kernel is to reduce storage
requirements on one hand as well as transfer times on the other. As always in compression,
the trade-off between storage reduction and compression overhead plays a central role and
will be evaluated in more depth in sections 3.7 and 4.4.

1.2 Compression Basics

The fundamental idea of data compression is to find shorter – and in case of lossy com-
pression approximate – representations for given data (= a sequence of symbols). Without
compression, the number of bits required for a symbol is determined by the data type of
the symbol, where typically only a few different types are supported by computer systems,
regardless of the actual symbol values. While this property allows very fast data access, it
usually takes up more storage than strictly required, for instance when only the 26 lower
case characters appear in a data stream but 8 bits have to be used for storage.
In lossless compression there is a hard limit on achievable compression, determined

by the so called entropy of the data. This part of information theory was introduced by
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Shannon [48] in 1948 where the entropy H of a sequence S of independent, identically
distributed symbols over an alphabet A = {X1, . . . , Xm} with probabilities P (Xi) was
defined as

H(S) = −
m∑
i=0

P (Xi) logP (Xi). (1.1)

The entropy represents the average amount of storage space per symbol (= rate) re-
quired to encode S losslessly. The unit of the storage space depends on the base of the
logarithm function in equation (1.1); typically log2 is used, in which case the entropy is
the average number of bits per symbol. Shannon proved that it is impossible for any com-
pression algorithm to encode a given symbol sequence in fewer bits than specified by the
entropy, provided the assumption about the independence of the symbols holds.

In many cases, the symbols are dependent, however. A typical example of this is
of course text, where preceding symbols severely restrict the possible values of following
symbols, for example the probability of a vowel following a ”th” in an english text is
considerably higher than that of another consonant. Symbols are often correlated in other
cases as well, such as in ”smooth” signals where the next symbol only differs from the
preceding one by a small amount which can be coded in fewer bits than the actual symbol
value. These dependencies are usually resolved via a data model, for instance ”english
text” or ”smooth values” or ”values lying approximately on a straight line” etc. The
better a model matches a symbol sequence the better this sequence can be compressed,
even well below the entropy based on the assumption of independent symbols. Therefore
most modern compression techniques consist of two layers, a top layer which transforms
the data according to a data model, and a bottom layer which actually compresses the
transformed data; this architecture will be discussed in more depth in chapter 3.

There is a very limited number of traditional techniques in the bottom layer and even
modern compression techniques rely on one of these for actual data compression. In con-
trast, there is a large number of data models in the top layer and most ”new” compression
techniques introduce new algorithms in the top layer only, this thesis being no exception.
Traditional data compression techniques can be divided into four elementary techniques
and two basic classes which may also be combined to improve the compression ratio (and
often are so); I will only give a short overview here since they will be covered in much more
depth in chapter 3.

Pattern-oriented techniques:

RLE: (Run-Length Encoding) compresses consecutive symbols of the same value.
Very low complexity, but also relatively poor compression ratio for dense data;

Dictionary Techniques: find patterns in the symbol sequence and replace these
literal patterns with references into a dictionary. Very high complexity during
compression, but usually a good compression rate;
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Variable-length coding:

Huffmann Coding: represents symbols with high probability with fewer bits than
those with lower probability, thereby achieving data reduction. Because every
symbol must be represented by an integral number of bits, only symbol proba-
bilities which are (negative) powers of 2 can be modelled exactly;

Arithmetic Coding: the current state-of-the-art in variable length coding which
recently superceded Huffmann coding as the de-facto standard. Arithmetic
coding represents a symbol sequence of arbitrary length by a number in the unit
interval [0, 1[ with arbitrary precision. By representing symbol probabilities as
subintervals of the unit interval with a width proportional to their probability,
arbitrary symbol probabilities can be modelled exactly;

An important property of these compression techniques is whether they are static or
whether they can adapt to the data they are applied to. For example a dictionary technique
could use a static dictionary or build the dictionary during operation; or the variable-
length coding techniques may need to know the probability distribution in advance or
they may adapt the probabilities according to the data automatically. In some cases, like
text in a natural language, static variants are usually sufficient or actually better than
adaptive ones because the sub-optimal ”learning” phase of the adaptive process can be
disposed of and the dictionary doesn’t have to be stored with the compressed data. But
in the majority of cases – especially when compressing binary data – adaptivity is an
important criterion because no generally applicable dictionary or probability distribution
exists. Regarding adaptivity, all dictionary techniques that are in common use today are
adaptive. Huffman coding is very hard to use adaptively because the Huffman tree has to be
fully materialized (and therefore constantly recalculated for adaptivity), making adaptivity
very expensive. Arithmetic coding can be made adaptive with much less overhead, which is
another substantial advantage over Huffman coding: even one of the first implementations
of arithmetic coding was adaptive [63].
Typically, compression in the bottom layer is a combination of a pattern-oriented tech-

nique followed by variable-length coding, e.g. for a compact representation of references
in dictionary coding like in the ZLib compression library [67] where dictionary offsets and
lengths are Huffmann-coded.

1.3 Related Work

There are not many publications on the subject of compression in databases and the exist-
ing ones are based on mostly text-based databases like RDBMSs. As noted in section 1.1,
the situation regarding compression in traditional, text based DBMSs differs considerably
from that in an Array DBMS, where typically large blocks of contiguous data are processed
and transferred in one go rather than single cell values. However, the basic goals of using
compression in a DBMS are the same for all kinds: reduction of storage and in addition
a potential IO speedup due to the reduced data volume. I will therefore discuss some of
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the literature on compression in RDBMSs here. It must be noted that the older the lit-
erature gets the less relevant its conclusions usually are from today’s perspective because
what used to be an expensive compression technique at that time may well be considered
light-weight compression today.
The newest of the publications introduced here is [16] and is actually more about

database normalization than compression in the classical sense. The idea introduced there
is to reduce the data volume by adding an indirection level for attributes which can have
a limited number of different values, i.e. rather than encode the attribute value inside the
table, the attribute becomes a reference into an additional dictionary table. The example
given there is a table encoding computer chip specifications where one field of characters
can take on the values CMOS and TTL only. These can be “compressed” by using a dictionary
table containing these two possible values and transforming the original table by storing
the offset into this dictionary table in place of the attribute value, which can be done in
just 1 bit in this example. While some of the most widely used compression algorithms like
LZ77 [64] and LZ78 [65] are based on the idea of a dictionary, it still seems odd to categorize
transformations like the above as compression rather than database normalization. There is
common ground between schema design and compression in that good schema design strives
to minimize redundancy (at least when ignoring preaggregation), just like compression;
nonetheless what this paper actually describes is much closer to schema design or even
plain programming style than to (database) compression.
A paper covering actual compression in a RDBMS is [62] which introduces several com-

pression techniques, discusses the ones chosen in more depth and concludes with measure-
ments after integrating the compression engine into their AODB system. Low compression
overhead and fine access granularity are stressed as points of primary importance from the
beginning. Compressed tuples are divided into five fields with different properties, namely

1. values of fields compressed to constant length (no address calculations), e.g. using
dictionary techniques with a known dictionary size;

2. lengths of all fields compressed to variable length (note that the length of this section
is also of constant length);

3. values of uncompressed fields of constant length (this section is of constant length
too);

4. values of fields compressed to variable length;

5. string values of VARCHAR fields; CHAR fields of fixed (maximum) length are converted
to VARCHAR fields to ensure only the data actually required for the string is stored.

This separation aims to allow constant random access time by putting all fields of
constant size in a block at the beginning. The actual compression techniques used are
rather simple, e.g. integer numbers are compressed by storing the minimum number of
bytes needed to represent the integer as length information, plus the actual bytes as values.
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Since all length information is packed in one block, it can be packed into bytes without
unused gaps, i.e. at most 7 bits are wasted per block. Applying the TPC-D benchmark
to a database using this compression approach was quite successful with the size of the
compressed database reduced to 64% and the total query time on the compressed database
reduced to 62%, both compared to the uncompressed database. However, the time for
bulkloading the compressed database went up to 146%.

A more advanced compression method based on Huffman coding is suggested in [17]
and implemented in the IMS DBMS as a segment store/retrieve filter. A segment in IMS
is a concatenation of tuple values of various types, typically considerably shorter than
a database page. Because the access granularity of the filter is on segment level, the
decompression algorithm can only use (statistical) data stored in the compressed segment
and due to the size of the segments this means only very little compression meta data
can be stored. Furthermore, the exact boundaries of the tuple values are not known to
the filter, although they would aid the handling of compression considerably. The solution
suggested in [17] was to use a fixed set of contexts, each with its own set of Huffman
codes optimal for the context, and switching the context adaptively whenever a symbol is
encountered that is improbable in the current context but probable in another. Thus, in
a context for alphabetic symbols, a number is relatively improbable, so after encountering
a number the context would be switched to one for numbers. The Huffman codes for the
various contexts are generated once for a given database by gathering statistical information
about its contents. That is probably the biggest shortcoming of this approach because it
works only on (at least statistically) static databases, as changing the Huffman codes to
compensate changes in the distribution requires recompressing the entire database. When
applied to entire, existing databases, the approach worked quite well, however: the authors
compressed a database consisting of student records to 58% with only 17% CPU overhead
due to compression.

The above publications share little common ground with this thesis because of the
considerable differences between text and array data. Of course basic techniques like
variable length or dictionary coding are used in some parts of the compression engine
described in this thesis as well, as in most sophisticated compression algorithms, but the
model layer differs completely. There is a large body of work using similar model layers
in image compression, however, which was used as a design template for parts of the
compression engine. The related literature on image compression is too numerous to quote
at this point, but a good overview on existing techniques can be found in [47].

1.4 Structure

The thesis starts with an overview on the terminology and data types used as well as the
RasDaMan architecture and its implementation of these data types in chapter 2. This is
followed by the design of the compression engine as an object-oriented two-layer architec-
ture (model- and compression layer) supporting a large range of compression techniques
in chapter 3. This includes wavelets in theory and their applications in data compression,
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predictors, dynamic parameter system, and closes with an analysis of transfer compression.
This will be followed by an evaluation of the engine on different data types in chapter 4,
and the thesis will close with some comments on the current state of the system and future
work in chapter 5.




