Martin Felix Closs

Numerical Modelling and Optimisation of Radio-Frequency Ion Thrusters

Herbert Utz Verlag · Wissenschaft München Die Deutsche Bibliothek – CIP-Einheitsaufnahme

Ein Titeldatensatz für diese Publikation ist bei Der Deutschen Bibliothek erhältlich

Zugleich: Dissertation, München, Univ. der Bundeswehr, 2001

Dieses Werk ist urheberrechtlich geschützt. Die dadurch begründeten Rechte, insbesondere die der Übersetzung, des Nachdrucks, der Entnahme von Abbildungen, der Wiedergabe auf photomechanischem oder ähnlichem Wege und der Speicherung in Datenverarbeitungsanlagen bleiben – auch bei nur auszugsweiser Verwendung – vorbehalten.

Copyright © Herbert Utz Verlag GmbH 2002

ISBN 3-8316-0140-2

Printed in Germany

Herbert Utz Verlag GmbH, München Tel.: 089/277791-00 – Fax: 089/277791-01

Abstract

An entirely self-consistent numerical model of radio-frequency ion thrusters was developed. It allows to calculate the behaviour of such devices over wide operating ranges, without prior knowledge of new designs in the form of test data.

The intention was to develop a method of calculating the behaviour of an RF ion thruster given its geometry, the type of propellant used and the electric potentials applied to the grid system. The data provided by this calculation should give valuable information for the control of the thruster, electronics design and for system engineering studies. It should also allow the optimisation of a design on a numerical basis in order to reduce the effort and cost required for the manufacturing and test of prototype models. As a difference to current plasma modelling, the development of this model of RF ion thrusters emphasised on trading detailed information with simplicity and computational efficiency in order to allow a fast calculation of entire performance maps–information which is crucial to the engineering process.

The model includes a calculation of the gas discharge kinetics inside the thruster for electrons, singly and doubly charged ions and neutral atoms. A Direct Monte Carlo simulation (DSMC) of the neutral gas efflux through the extraction grid system was performed in order to find a method of calculating the neutral gas density in the plasma. Based on these calculations, an estimation of the charge exchange process which causes ion impingement on the accelerator grid was performed in order to account for the loss of thrust caused by charge exchange. A novel approach was taken in calculating the coupling of RF power into the plasma by solving a nonlinear form of Maxwell's equations. The Finite Element Method was employed to find a solution to these partial differential equations. This approach allows to ascertain the influence of the RF coil geometry and the thruster housing on the overall performance of the ion thruster. Based on information obtained from the discharge calculation and the treatment of the charge exchange process in the grid system, a new more accurate way of calculating the ion engine's thrust was developed.

Due to the computational efficiency of the model, the numerical optimisation of the thruster's discharge vessel is rendered possible. The contour of the discharge vessel can be optimised on a theoretical basis, reducing the number of prototype tests. Results promise a reduction in RF power of 25 % and a reduction of the mass of the discharge vessel of 40 %, which would lead to a new, more lightweight thruster design.

Zusammenfassung

Ein vollständig selbstkonsistentes Modell für Radiofrequenz-Ionentriebwerke wurde entwickelt. Es erlaubt die Berechnung des Verhaltens solcher Triebwerke über weite Betriebsbereiche, ohne die Notwendigkeit von Messdaten vorhandener Geräte.

Das Ziel war es, eine Berechungsmethode zu entwickeln, mit der man das Verhalten der Triebwerke berechnen kann, wenn die Geometrie, die Treibstoffsorte und die Gitterpotentiale gegeben sind. Die berechneten Daten sollten wertvolle Information für die Regelung, Elektronikentwicklung und Systembetrachtungen liefern. Das Modell sollte auch zur theoretischen Optimierung des Triebwerks dienen, um den Aufwand und die Kosten für den Bau und Test von Prototypen zu reduzieren. Bei der Entwicklung dieses Modells wurde sorgfältig der Nutzen von detaillierten Berechnungen gegenüber der rechnerischen Einfachheit und Effizienz abgewägt um die Berechnung ganzer Kennlinienfelder zu erlauben - Information, die für den Ingenieur unerlässlich ist.

Das Modell enthält eine Berechnung der Gasentladungskinetik im Triebwerk für Elektronen, einfach und doppelt geladene Ionen und Neutralteilchen. Die Neutralgasströmung durch das Extraktionsgittersystem wurde mit der Direct Simulation Monte Carlo (DSMC)-Methode simuliert, um ein Berechnungsverfahren für den Neutralgasverlust und -druck zu entwickeln. Basierend auf diesen Berechnungen wurde ein Modell des Ladungsaustausches zwischen Neutralteilchen und Ionen im Gittersystem entwickelt, um den dadurch entstehenden Schubverlust zu berücksichtigen. Zur Bestimmung der HF-Leistungseinkoppelung in das Plasma wurde ein neuer Ansatz entwickelt, der eine nichtlineare Form der Maxwell'schen Gleichungen verwendet. Zur Lösung dieser Partiellen Differentialgleichungen wurde die Finite-Elemente-Methode herangezogen. Diese Methode erlaubt die Untersuchung beliebiger HF-Spulengeometrieen und Triebwerksgehäuseformen, um deren Einfluss auf die Effizienz des Triebwerks zu studieren. Basierend auf der Berechnung der Gasentladungskinetik und des Ladungsaustausches im Gittersystem wurde eine neue und genauere Methode zur Abschätzung des Triebwerksschubes entwickelt.

Da dieses Modell einen verhältnismäßig geringen Rechenaufwand benötigt, wurde die numerische Optimierung des Entladungsgefäßes möglich. Die Form des Gefäßes kann auf einer theoretischen Basis optimiert werden, was die Anzahl nötiger Prototypen stark reduziert. Die Resultate weisen auf eine Mögliche Einsparung der HF-Leistung von 25 % und eine Gewichtsreduktion des Entladungsgefäßes von 40 % hin.

Contents

1	Intr	Introduction					
	1.1	A Brief History of Ion Propulsion					
	1.2	Ion Pr	copulsion: an Overview	2			
		1.2.1	Ground Based Applications of Ion Beam Sources	4			
	1.3	The P	rinciple of RF Ion Thrusters	4			
		1.3.1	Ion Generation	4			
		1.3.2	Ion Extraction and Acceleration	7			
		1.3.3	Beam Neutralisation	10			
		1.3.4	Power Dissipation	13			
	1.4	Previo	us Work	13			
	1.5	The S	cope of this Thesis	17			
		1.5.1	Novelties in the RF Ion Thruster Model	18			
	1.6	Missio	n Aspects of Electric Propulsion	20			
		1.6.1	Suitable Propellants	25			
		1.6.2	GEO Station Keeping	26			
		1.6.3	Orbit Transfer Manoeuvres	27			
		1.6.4	Atmospheric Drag Compensation	29			
2	Basis						
	2.1	Plasm	a Physics	33			
		2.1.1	Collisions in the Plasma of an RF Ion Thruster	33			
		2.1.2	The Plasma Sheath	37			
		2.1.3	Typical Values of Plasma Parameters in an RF Ion Thruster	40			
		2.1.4	Plasma Conductivity	40			
	2.2	Rarefi	ed Gas Flow	45			
	2.3	Electr	odynamics	47			
		2.3.1	Maxwell's Equations	47			
		2.3.2	Skin Effect	49			
3	\mathbf{RF}	Ion T	nruster Model	51			
	3.1	1 Discharge					
		3.1.1	General Assumptions and Simplifications	51			
		3.1.2	Definition of the System Domain	53			
		3.1.3	Equations of Conservation	53			
		3.1.4	Fluxes to and from the Systems	56			

		3.1.5	Assembly of the Equations and Numerical Solution		61			
	3.2	Accele	rator Grid Impingement Current		63			
		3.2.1	Estimating the Neutralisation Plane		69			
	3.3	Thrust	;		71			
		3.3.1	Charge Exchange Ions and Beam Divergence Neglected		71			
		3.3.2	Momentum Loss Due to Charge Exchange and Beam Divergence		72			
	3.4	RF Fie	eld Coupling and Coil Impedance		74			
		3.4.1	Boundary Conditions		74			
		3.4.2	Problem Solution		76			
		3.4.3	Power Dissipated in Coil and Housing		78			
		3.4.4	Capacitive Coupling		81			
	3.5	Assem	bling the Parts of the Model		84			
	3.6	Verific	ation of the Model		84			
		3.6.1	Coil Inductance without Plasma		84			
		3.6.2	Absorbed RF Power P_{RF}		84			
		3.6.3	RFG Power Input P_{RFG}		89			
		3.6.4	Accelerator Impingement Current I_{acc}		92			
		3.6.5	RF Generator Current I_{rfg}		98			
		3.6.6	Discharge Vessel Temperature T_{dv}		103			
4	Optimising the Discharge Vessel							
	4.1	Opera	ting Conditions Necessary for Optimisation		107			
	4.2	Optim	al Shape for the Discharge Vessel		108			
	4.3	Expect	ted Improvements Through Optimisation		112			
5	Con	nclusions and Outlook						
Re	References							
A	A: The Finite Element Method							
B:	B: The Direct Simulation Monte Carlo Method							