
���������	

�
��
�


�����������
�������������������	����

�
��������������������������������


�
��
��������
�����������
�������

� ���
�



!�
�!
�����
���������
"�#��$�%&���
���������'


&������
����
������� ����
�
������"���������

�
��!
��!
�����
����������
"�
��(������

)���
���*�!���
�������+�� ���
�+��
���,����-,+�.//.

!�
�
���
�"� �������
�
��
���������
��� ���,�!�
��������

�
�� ��
�
��0
���
+� ����
����
�
���
��
��1�
��
�����+

�
�� 2�������"�+� �
�� &�����'
� -��� 3��������
�+� �
�

��
�
����
� ���� �����'
��������
'� ��
�� (������
'

�
�
� ���� �
�� 	�
���
����� ��� !��
�-
����
������%

�����
����
��
��#�������
�� �����������4
��
���
�4
�%

�����#�-���
����
�,

���5������6���
��
��������
�����7'����.//.

$	�2�8%98:;%/:<<%/

�����
�����7
�'��5

�
��
��������
�����7'��+�� ���
�

�
�,*�/9=>.???=:%//�#�@�A*�/9=>.???=:%/:



Contents

Preface i

1 Introduction 1

2 Fundamentals of Astrodynamics 5

2.1 Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Sidereal Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Solar and Universal Time . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Dynamical Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1.4 Atomic Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Coordinate Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 Geocentric Equatorial Coordinate System . . . . . . . . . . . . . . 10

2.2.2 Moon Centered Equatorial Coordinate System . . . . . . . . . . . . 10

2.2.3 Perifocal Coordinate System . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 Classical Orbital Elements . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.5 Coordinate Transformations . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 The N-Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.2 The Restricted Two-Body Problem . . . . . . . . . . . . . . . . . . 19

2.4 Special Perturbation Techniques . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4.1 Gravity Field of a Central Body . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Third-Body Perturbations . . . . . . . . . . . . . . . . . . . . . . . 27

2.4.3 Atmospheric Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Solar Radiation Pressure . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5 Numerical Integration Methods . . . . . . . . . . . . . . . . . . . . . . . . 30



iv CONTENTS

2.6 Numerical Optimization Methods . . . . . . . . . . . . . . . . . . . . . . . 33

3 Orbital Transfer 37

3.1 Mission Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.1.1 Motion of the Moon . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1.2 Lunar Orbit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1.3 Standard Ariane 5 Geostationary Transfer Orbit . . . . . . . . . . . 40

3.2 Tangential Orbital Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.1 Coplanar Transfer Orbits . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2.2 Non-coplanar Transfer Orbits . . . . . . . . . . . . . . . . . . . . . 43

3.3 Circular Restricted Three-Body Problem . . . . . . . . . . . . . . . . . . . 47

3.4 Low Energy Transfers between the Earth and the Moon . . . . . . . . . . . 51

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Linear Orbit Theory 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Linearization of the Equations of Motion . . . . . . . . . . . . . . . . . . . 61

4.3 Effects of the Solar Gravity Gradient . . . . . . . . . . . . . . . . . . . . . 65

4.3.1 Pericenter-Raise Maneuver . . . . . . . . . . . . . . . . . . . . . . . 65

4.3.2 Inclination-Only Change Maneuver . . . . . . . . . . . . . . . . . . 67

4.3.3 Projected Acceleration due to the Solar Gravity Gradient . . . . . . 68

4.3.4 Magnitude of Velocity Change . . . . . . . . . . . . . . . . . . . . . 75

4.3.5 Magnitude of Inclination Change . . . . . . . . . . . . . . . . . . . 83

4.3.6 Implications on the Earth-Moon-Sun Configuration at Arrival . . . 84

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5 Theory and Numerical Model Verification 87

5.1 HITEN - First WSB Transfer . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.1 Mission Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.1.2 Theoretical Analysis and Numerical Reproduction . . . . . . . . . . 89

5.2 NOZOMI - Mission to Mars . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.1 Mission Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2.2 Theoretical Analysis and Numerical Reproduction . . . . . . . . . . 95



CONTENTS v

6 Sun Perturbed Lunar Transfer 101

6.1 Stepwise Approach Philosophy . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.2 Computation and Optimization Strategy . . . . . . . . . . . . . . . . . . . 104

6.2.1 Parameterization of the Transfer Problem . . . . . . . . . . . . . . 104

6.2.2 Solving Lambert’s Problem . . . . . . . . . . . . . . . . . . . . . . 105

6.2.3 Solving Kepler’s Problem . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.4 Force Model for Numerical Integration . . . . . . . . . . . . . . . . 109

6.3 Computation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3.1 Patched Conics Approximation . . . . . . . . . . . . . . . . . . . . 111

6.3.2 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.4 Visualization of Sample Transfers . . . . . . . . . . . . . . . . . . . . . . . 127

6.5 Discussion of Results and Summary . . . . . . . . . . . . . . . . . . . . . . 130

7 Ballistic Capture Transfer 133

7.1 Optimization Strategy and Algorithm . . . . . . . . . . . . . . . . . . . . . 134

7.1.1 Stepwise Approach Philosophy . . . . . . . . . . . . . . . . . . . . . 134

7.1.2 Parameterization of the Transfer Problem . . . . . . . . . . . . . . 136

7.1.3 Force Model for Numerical Integration . . . . . . . . . . . . . . . . 139

7.1.4 Bisection Root Finder . . . . . . . . . . . . . . . . . . . . . . . . . 139

7.2 Results - Bifurcation Scan . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

7.3 Results - Optimized Transfer Samples . . . . . . . . . . . . . . . . . . . . . 145

7.4 Discussion and Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

8 Summary 167

A List of Symbols 169

B List of Acronyms 173

References 174





1 Introduction

Preliminary orbit determination is one of the basic challenges of all mission analysis
activities for any space mission. It is the process of formulating the fundamental elements
and parameters that define a space mission orbit, determining how to get a spacecraft to
its destination. This task is, on the one hand, subject to the satisfaction of the inherent
objectives, allowing for the achievement of all mission goals. On the other hand, it has
a major impact on the design of the spacecraft, as well as on the effort necessary for its
operation. In particular the amount of propellant which must be stored in a spacecraft’s
fuel tanks in order to reach its target, is one of the most crucial conclusions returned from
the preliminary orbit determination.

Within this context, the subject of the methods of orbital transfer receives a special
attention. As for the problem of a transfer between two celestial bodies, the classical
approach suggests at least two definite thrust maneuvers, accounting for the injection
from the departure body toward the target body, and for the injection into the final orbit
around the target body. It has been the subject of many optimization analyses in the past,
to investigate the problem whether two or more maneuvers guarantee a higher efficiency.
But what remained constant during all of the investigations concerning this problem, was
the requirement of a definite thrust maneuver to leave the gravitational attraction of the
departure body and a definite thrust maneuver to achieve a capture at the target body.
In this respect, the ideal trajectory is considered to be the one which results from the
gravitational attraction only between the spacecraft and a central body. The decision on
which celestial body serves as the attracting central body, defining the spacecraft’s motion,
is driven by the selection of the predominating gravitational environment. Perturbations
of any kind are, most commonly, accounted as influences which cause deviations from the
nominal two-body trajectory, and, therefore, raise the necessity of correction maneuvers.
These may contribute to an increased propellant budget.

In 1991, the Japanese satellite, HITEN, developed from The Institute of Space and Astro-
nautical Science, ISAS, entered an orbit around the Moon without a deterministic thrust
maneuver, Kawaguchi et al. (1995). On board this spacecraft there was a cosmic dust
counter experiment, the Munich Dust Counter (MDC), developed at the Division of As-
tronautics, Technische Universität München, Germany, Igenbergs et al. (1991). This
was the world’s first demonstration of a new class of transfer trajectories which represent
a low energy alternative to the classical transfer orbit methods like the Hohmann, or
bi-elliptic transfer.

It was originally invented by Belbruno (1987) and was first applied to a study of an
electric spacecraft mission, LGAS (Lunar Get Away Special), conducted at the Jet Propul-
sion Laboratory, JPL in 1986-87. The goal of this mission analysis was to investigate the
trajectory profile for a small electric propulsion space vehicle, ejected from a canister on
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board the space shuttle. The satellite was supposed to slowly spiral away from the Earth
and to eventually move into a polar orbit around the Moon. The thrust level, provided
by the onboard electric propulsion system, was too small to achieve a capture in terms of
a classical final orbit insertion maneuver using the spacecraft engine. This problem has
driven the motivation for the discovery of lunar ballistic capture orbits. The fundamental
difference between these trajectories and the classical methods of orbital transfer consists
of the transformation of the hyperbolic arrival orbit into an elliptic arrival trajectory. For
that purpose it is extensively made use of perturbations, in particular of those which are
imposed through the gravitational attraction of third-bodies. Hence, for this type of or-
bits, perturbations do no longer just cause deviations from an ideal trajectory which must
be corrected spending additional fuel, but they contribute actively to lower the velocity
requirement of spacecraft missions even to values beneath limits which were estimated
to be absolute minima in many analytical considerations. Furthermore, the requirement
of a definite thrust maneuver to achieve a capture at the target body is eliminated. On
the other hand, this type of transfer trajectories strongly affect the orbital conditions at
departure and arrival, and it is not yet demonstrated whether each of these parameters
can be selected freely.

For this transfer method, being applicable to general mission analyses, it is necessary to
prove that solutions can be found which satisfy both, given conditions at the departure
point, as well as given conditions at the target body arrival. In this respect, it is the goal
of this work to develop strategies and algorithms to calculate ballistic capture transfer
trajectories between the Earth and the Moon for a selected Earth departure orbit and
selected lunar orbit parameters. These transfer orbits make use of effects which occur
in the gravitational interaction of the four-body problem, leading to a chaotic behavior
of the spacecraft in the so-called Weak Stability Boundary regions, Belbruno (1999).
The spacecraft dynamics, connected to the Weak Stability Boundary regions is not yet
fully understood. Therefore, it is furthermore the task of the present study, to derive
conclusions on the effects of solar perturbations on the utilized lunar ballistic capture
orbits. In order to achieve these goals, this work is built of the following structure.

The theoretical background which is necessary to compute and optimize lunar ballistic
capture orbits is presented in Chapter 2. It is indicated which time and coordinate
systems are used and how transformations can be done between different systems. The
basic differential equations of motion which allow for a mathematical modeling of satellite
trajectories are derived and some fundamental solutions are presented. Techniques, how
to account for perturbations and how to numerically integrate the equations of motion
are shown. Finally, the optimization method which has been utilized within this work is
briefly described.

Chapter 3 presents an overview of standard transfer methods which are commonly applied
to modern space missions. This includes the classical two and three-impulse transfer
orbits, the Hohmann and bi-elliptic transfers, and gives an estimate of the global minimum
energy Earth-to-Moon transfer trajectory using the circular restricted three-body problem.
The state of the art of lunar ballistic capture orbits is shown and an explanation to the
term ’Weak Stability Boundary’ is given. Within this chapter, the transfer orbit conditions
of the selected Earth-to-Moon mission scenario are outlined, indicating the aspects which
have not been addressed so far in the context of lunar ballistic capture orbits.
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An analytical estimation of the effect of the gravity potential of the Sun on lunar transfer
orbits is presented in Chapter 4. Using a linearization of the equation of motion, regions
are determined in which a space vehicle can benefit from solar perturbations in order to
reduce its velocity requirement. In this way, regions, defined by the geometrical constel-
lation of the position of the Sun with respect to the spacecraft orbit, can be obtained in
which Weak Stability Boundary transfers are possible. They can be deployed to isolate
solution candidates during numerical simulation.

Before specific examples of lunar transfer orbits utilizing solar perturbations and ballis-
tic capture will be calculated, evidence of the accuracy of the developed methods and
techniques is provided in Chapter 5 by processing real trajectory data. In this way, the
used models and deduced analytical relationships, and therefore, the results of this work
are validated. For that purpose, operational flight data from the Japanese HITEN and
NOZOMI space missions is used. Both satellites have utilized effects connected to the
Weak Stability Boundary methodology. By a partial reproduction of these space mission
orbits, the numerical force model of the developed software packages, as well as the ana-
lytical propositions which are made in order to account for the general feasibility of WSB
transfer orbits, can be verified. On board both spacecraft, the Division of Astronautics
has placed and operated two cosmic dust counter experiments.

In Chapter 6, the strategies and algorithms which have been used to calculate and optimize
Sun perturbed lunar transfers are presented. The results of this process are shown as
solutions of the patched conics approximation, as well as the numerical integration. The
patched conics approximation allows to determine the order of magnitude of lunar transfer
parameters and it is used here as an initial guess for the final optimization using numerical
integration.

A systematic search for lunar ballistic capture orbits is presented in Chapter 7. The
strategies and algorithms which have been employed in this context are shown. They make
use of the results obtained from the analytical estimation in Chapter 4 and the numerical
optimization in Chapter 6. Some selected solutions are presented and compared to the
results of the Sun perturbed lunar transfers. Within this chapter, the nature of ballistic
capture orbits and the behavior of a satellite connected to the Weak Stability Boundary
regions are indicated.





2 Fundamentals of Astrodynamics

’Astrodynamics is the study of motion of man made objects in space, subject to both
natural and artificially induced forces’, Griffin & French (1991) This definition actu-
ally combines features of celestial mechanics with orbital and attitude dynamics. Often,
these are specified as separated parts of astrodynamics: celestial mechanics examines the
dynamic motion of celestial objects, orbital mechanics studies the motion of all orbiting
bodies, and attitude dynamics deals with the orientation of an object, Vallado (1997).
As for the problem of a spacecraft transfer from one celestial body to another, both ce-
lestial mechanics and orbital mechanics must be applied. This chapter shall provide the
basic relationships of astrodynamics which are used to design a transfer from the Earth
to the Moon, using the Weak Stability Boundary methodology. As a basis for this chap-
ter, the Fundamentals of Astrodynamics and Applications Vallado (1997) as well as the
Fundamentals of Astrodynamics Bate et al. (1971) have been used.

2.1 Time

Time is the fundamental dimension in almost every branch of science. According to
Newcomb (1960), ’the main purpose of time is to define with precision the moment
of a phenomenon.’ This moment is referred to as the epoch of the event. Thus, the
epoch designates a particular instant described as a date. The determination of an epoch
is based on measuring or counting precisely time intervals. In astrodynamics, time is
particularly critical, because objects are far and move quickly. To have a practical time
system, it is necessary to have a repeatable time interval based upon some measurable
physical phenomena and also to have a fundamental epoch from which to count intervals.
The commonly accepted fundamental epoch is the beginning of Christian era, although
others exist. Finding a precise repeatable time interval is more problematic. Four time
systems now provide timekeeping for scientific, engineering, and general purposes. These
are:

• Sidereal Time

• Solar and Universal Time

• Dynamical Time

• Atomic Time

Sidereal time and universal time are based upon the Earth’s rotation and are related
through mathematical relationships. Dynamical time and atomic time are truly indepen-
dent from the other forms. They are for very precise timekeeping.




